83.10 Hecke elements of the primed $D$ basis

Basis( H, "D'" )

returns a function which gives the D^prime-basis of the (one parameter generic) Iwahori-Hecke algebra H (see cite[(5.1)]Lus85). This can be defined by [ D_x^prime := v^-NC_xw_0 T_w_0 mbox for every x in W, ] where N denotes the number of positive roots in the root system of W and w_0 is the longest element of W. The D^prime-basis is basis dual to the C^prime-basis with respect to the non-degenerate form H times H rightarrow {ZZ}[v,v^{-1}], (h_1,h_2) mapsto tau(h_1 cdot h_2) where tau colon H rightarrow {ZZ}[v,v^{-1}] is the linear form such that tau(T_1)=1 and tau(T_x)=0 for x neq 1. We have D_x^prime=Alt(D_x) for all x in W (see AltInvolution in section Operations for Hecke elements of the $T$ basis).

    gap> W := CoxeterGroup( "B", 2 );;
    gap> v := X( Rationals );; v.name := "v";;
    gap> H := Hecke( W, v^2, v );
    Hecke(CoxeterGroup("B", 2),[ v^2, v^2 ],[ v, v ])
    gap> T := Basis( H, "T" );
    function ( arg ) ... end
    gap> Dp := Basis( H, "D'" );
    function ( arg ) ... end
    gap> AltInvolution( Dp( 1 ) );
    D(1)
    gap> Dp( 1 )^3;
    (v+2v^-1-5v^-5-9v^-7-8v^-9-4v^-11-v^-13)D'()+(v^2+2+v^-2)D'(1) 

This function requires the package "chevie" (see RequirePackage).

Previous Up Top
Index

GAP 3.4.4
April 1997