This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.
Source( map ) A
Range( map ) A
SourceHom( map ) A
RangeHom( map ) A
Morphisms of 2dObjects are implemented as 2dMappings.
These have a pair of 2d-objects as source and range, together with two
group homomorphisms mapping between corresponding source and range groups.
3.1 Morphisms of pre-crossed modules
A morphism between two pre-crossed modules
X1 = (¶1 : S1 ® R1) and
X2 = (¶2 : S2 ® R2)
is a pair (s, r), where
s: S1 ® S2 and r: R1 ® R2
commute with the two boundary maps
and are morphisms for the two actions:
|
SourceHom and r is the RangeHom.
When X1 = X2 and s, r are automorphisms then (s, r) is an automorphism of X1. The group of automorphisms is denoted by Aut(X1 )·
The usual properties of mappings may be checked:
IsInjective( map ) P
IsSurjective( map ) P
IsSingleValued( map ) P
IsTotal( map ) P
IsBijective( map ) P
IsEndomorphism( map ) P
IsAutomorphism( map ) P
Constructors for morphisms of pre-crossed modules include:
PreXModMorphism( args ) F
XModMorphism( args ) F
PreXModMorphismByHoms( P1, P2, sigma, rho ) O
XModMorphismByHoms( X1, X2, sigma, rho ) O
InclusionMorphism( X1, S1 ) O
InnerAutomorphism( X1, r ) O
IdentityMapping( X1 ) A
IsomorphismPermGroup( obj ) A
In the following example we construct a simple automorphism of the crossed module X1 constructed in the previous chapter.
gap> sigma1 := GroupHomomorphismByImages( c5, c5, [ (1,2,3,4,5) ]
[ (1,5,4,3,2) ] );;
gap> rho1 := IdentityMapping( Range( X1 ) );
IdentityMapping( PermAut(c5) )
gap> mor1 := XModMorphism( X1, X1, sigma1, rho1 );
[[c5->PermAut(c5)] => [c5->PermAut(c5)]]
gap> Display( mor1 );
Morphism of crossed modules :-
: Source = [c5->PermAut(c5)] with generating sets:
[ (1,2,3,4,5) ]
[ (1,2,4,3) ]
: Range = Source
: Source Homomorphism maps source generators to:
[ (1,5,4,3,2) ]
: Range Homomorphism maps range generators to:
[ (1,2,4,3) ]
gap> IsAutomorphism( mor1 );
true
3.2 Morphisms of pre-cat1-groups
A morphism of pre-cat1-groups from
C1 = (e1;t1,h1 : G1 ® R1)
to C2 = (e2;t2,h2 : G2 ® R2)
is a pair (g, r) where
g: G1 ® G2 and r: R1 ® R2
are homomorphisms satisfying
|
PreCat1Morphism( args ) F
Cat1Morphism( args ) F
PreCat1MorphismByHoms( P1, P2, gamma, rho ) O
Cat1MorphismByHoms( C1, C2, gamma, rho ) O
InclusionMorphism( C1, S1 ) O
InnerAutomorphism( C1, r ) O
IdentityMapping( C1 ) A
IsomorphismPermGroup( obj ) A
The function IsomorphismPermGroup constructs a morphism
whose SourceHom and RangeHom are the IsomorphismPermGroups
of the source and range.
gap> iso := IsomorphismPermGroup( C2 );
[[..] => [..]]
gap> Display( iso );
Morphism of cat1-groups :-
: Source = [s3c4=>s3] with generating sets:
[ f1, f2, f3, f4 ]
[ f1, f2 ]
: Range = [Group(
[ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
(11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
(14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
(13,15,14,16)(17,19,18,20)(21,23,22,24),
( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24) ] )=>Group( [ (1,4)(2,6)(3,5), (1,2,3)(4,5,6)
] )] with generating sets:
[ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
(11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
(14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
(13,15,14,16)(17,19,18,20)(21,23,22,24),
( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24) ]
[ (1,4)(2,6)(3,5), (1,2,3)(4,5,6) ]
: Source Homomorphism maps source generators to:
[ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
(11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
(14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
(13,15,14,16)(17,19,18,20)(21,23,22,24),
( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24) ]
: Range Homomorphism maps range generators to:
[ (1,4)(2,6)(3,5), (1,2,3)(4,5,6) ]
CompositionMapping( map2, map1 ) O
Order( auto ) A
Kernel( map ) O
Kernel2dMapping( map ) A
Composition of morphisms, written (map1 * map2) for maps acting of the right,
calls the CompositionMapping function for maps acting on the left,
applied to the appropriate type of 2d-mapping.
gap> mor1; [[c5->PermAut(c5)] => [c5->PermAut(c5)]] gap> Order(mor1); 2 gap> mor23; [[nq8->sl23] => [k4->a4]] gap> k23 := Kernel( mor23 ); [Group( [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] )->Group( [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] )] gap> Display(k23); Crossed module [..->..] :- : Source group has generators: [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] : Range group has generators: [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] : Boundary homomorphism maps source generators to: [ (1,6)(2,3)(4,5)(7,8) ] The automorphism group is trivial gap> IsNormal( Source(mor23), k23 ); true
[Up] [Previous] [Next] [Index]
XMod manual