[Up] [Previous] [Next] [Index]

3 2d-mappings

Sections

  1. Morphisms of pre-crossed modules
  2. Morphisms of pre-cat1-groups
  3. Operations on morphisms

This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.

  • Source( map ) A
  • Range( map ) A
  • SourceHom( map ) A
  • RangeHom( map ) A

    Morphisms of 2dObjects are implemented as 2dMappings. These have a pair of 2d-objects as source and range, together with two group homomorphisms mapping between corresponding source and range groups.

    3.1 Morphisms of pre-crossed modules

    A morphism between two pre-crossed modules X1 = (1 : S1 ® R1) and X2 = (2 : S2 ® R2) is a pair (s, r), where s: S1 ® S2 and r: R1 ® R2 commute with the two boundary maps and are morphisms for the two actions:
    2 s = r1,        s(sr) = (ss)rr·
    Thus s is the SourceHom and r is the RangeHom.

    When X1 = X2 and s, r are automorphisms then (s, r) is an automorphism of X1. The group of automorphisms is denoted by Aut(X1

    The usual properties of mappings may be checked:

  • IsInjective( map ) P
  • IsSurjective( map ) P
  • IsSingleValued( map ) P
  • IsTotal( map ) P
  • IsBijective( map ) P
  • IsEndomorphism( map ) P
  • IsAutomorphism( map ) P

    Constructors for morphisms of pre-crossed modules include:

  • PreXModMorphism( args ) F
  • XModMorphism( args ) F
  • PreXModMorphismByHoms( P1, P2, sigma, rho ) O
  • XModMorphismByHoms( X1, X2, sigma, rho ) O
  • InclusionMorphism( X1, S1 ) O
  • InnerAutomorphism( X1, r ) O
  • IdentityMapping( X1 ) A
  • IsomorphismPermGroup( obj ) A

    In the following example we construct a simple automorphism of the crossed module X1 constructed in the previous chapter.

    gap> sigma1 := GroupHomomorphismByImages( c5, c5, [ (1,2,3,4,5) ]
            [ (1,5,4,3,2) ] );;
    gap> rho1 := IdentityMapping( Range( X1 ) );
    IdentityMapping( PermAut(c5) )
    gap> mor1 := XModMorphism( X1, X1, sigma1, rho1 );
    [[c5->PermAut(c5)] => [c5->PermAut(c5)]]
    gap> Display( mor1 );
    Morphism of crossed modules :-
    : Source = [c5->PermAut(c5)] with generating sets:
      [ (1,2,3,4,5) ]
      [ (1,2,4,3) ]
    : Range = Source
    : Source Homomorphism maps source generators to:
      [ (1,5,4,3,2) ]
    : Range Homomorphism maps range generators to:
      [ (1,2,4,3) ]
    gap> IsAutomorphism( mor1 );
    true 
    

    3.2 Morphisms of pre-cat1-groups

    A morphism of pre-cat1-groups from C1 = (e1;t1,h1 : G1 ® R1) to C2 = (e2;t2,h2 : G2 ® R2) is a pair (g, r) where g: G1 ® G2 and r: R1 ® R2 are homomorphisms satisfying
    h2 g = rh1 ,        t2 g = rt1 ,        e2 r = ge1 .

  • PreCat1Morphism( args ) F
  • Cat1Morphism( args ) F
  • PreCat1MorphismByHoms( P1, P2, gamma, rho ) O
  • Cat1MorphismByHoms( C1, C2, gamma, rho ) O
  • InclusionMorphism( C1, S1 ) O
  • InnerAutomorphism( C1, r ) O
  • IdentityMapping( C1 ) A
  • IsomorphismPermGroup( obj ) A

    The function IsomorphismPermGroup constructs a morphism whose SourceHom and RangeHom are the IsomorphismPermGroups of the source and range.

    gap> iso := IsomorphismPermGroup( C2 );
    [[..] => [..]]
    gap> Display( iso );
    Morphism of cat1-groups :-
    : Source = [s3c4=>s3] with generating sets:
      [ f1, f2, f3, f4 ]
      [ f1, f2 ]
    :  Range = [Group(
    [ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
        (11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
        (14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
        (13,15,14,16)(17,19,18,20)(21,23,22,24),
      ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
        (21,22)(23,24) ] )=>Group( [ (1,4)(2,6)(3,5), (1,2,3)(4,5,6)
     ] )] with generating sets:
      [ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
        (11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
        (14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
        (13,15,14,16)(17,19,18,20)(21,23,22,24),
      ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
        (21,22)(23,24) ]
      [ (1,4)(2,6)(3,5), (1,2,3)(4,5,6) ]
    : Source Homomorphism maps source generators to:
      [ ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
        (11,19)(12,20), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,17,21)
        (14,18,22)(15,19,23)(16,20,24), ( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)
        (13,15,14,16)(17,19,18,20)(21,23,22,24),
      ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
        (21,22)(23,24) ]
    : Range Homomorphism maps range generators to:
      [ (1,4)(2,6)(3,5), (1,2,3)(4,5,6) ]
    

    3.3 Operations on morphisms

  • CompositionMapping( map2, map1 ) O
  • Order( auto ) A
  • Kernel( map ) O
  • Kernel2dMapping( map ) A

    Composition of morphisms, written (map1 * map2) for maps acting of the right, calls the CompositionMapping function for maps acting on the left, applied to the appropriate type of 2d-mapping.

    gap> mor1;
    [[c5->PermAut(c5)] => [c5->PermAut(c5)]]
    gap> Order(mor1);
    2 
    gap> mor23;
    [[nq8->sl23] => [k4->a4]]
    gap> k23 := Kernel( mor23 );
    [Group( [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] )->Group(
    [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ] )]
    gap> Display(k23);
    Crossed module [..->..] :-
    : Source group has generators:
      [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ]
    : Range group has generators:
      [ ( 1, 6)( 2, 3)( 4, 5)( 7, 8) ]
    : Boundary homomorphism maps source generators to:
      [ (1,6)(2,3)(4,5)(7,8) ]
      The automorphism group is trivial
    gap> IsNormal( Source(mor23), k23 );
    true
    

    [Up] [Previous] [Next] [Index]

    XMod manual
    May 2002