Goto Chapter: Top 1 2 3 4 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[AB80] Alperin, J. L. and Burry, D. W., Block theory with modules, J. Algebra, 65 (1) (1980), 225–233.

[BH01] Breuer, T. and Horváth, E., On block induction, J. Algebra, 242 (1) (2001), 213–224.

[BL18] Breuer, T. and Lübeck, F., Browse, ncurses interface and browsing applications, Version 1.8.9 (2018)
(GAP package), http://www.math.rwth-aachen.de/~Browse.

[CCN+85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray).

[GAP19] GAP – Groups, Algorithms, and Programming, Version 4.10.2, The GAP Group (2019), http://www.gap-system.org.

[GM00] Gow, R. and Murray, J., Real 2-regular classes and 2-blocks, J. Algebra, 230 (2) (2000), 455--473.

[GW84] Gluck, D. and Wolf, T. R., Brauer's height conjecture for \(p\)-solvable groups, Trans. Amer. Math. Soc., 282 (1) (1984), 137–152.

[Isa76] Isaacs, I. M., Character theory of finite groups, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976), xii+303 pages
(Pure and Applied Mathematics, No. 69).

[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[KM13] Kessar, R. and Malle, G. R., Quasi-isolated blocks and Brauer's height zero conjecture, Ann. of Math. (2), 178 (1) (2013), 447.

[LP10] Lux, K. and Pahlings, H., Representations of groups, Cambridge University Press, Cambridge Studies in Advanced Mathematics, 124, Cambridge (2010), x+460 pages
(A computational approach).

[Mur06] Murray, J., Strongly real 2-blocks and the Frobenius-Schur indicator, Osaka J. Math., 43 (1) (2006), 201–213.

[Nav98] Navarro, G., Characters and blocks of finite groups, Cambridge University Press, London Mathematical Society Lecture Note Series, 250, Cambridge (1998), x+287 pages.

[NST15] Navarro, G., Solomon, R. and Tiep, P. H., Abelian Sylow subgroups in a finite group, II, J. Algebra, 421 (2015), 3--11.

[NT89] Nagao, H. and Tsushima, Y., Representations of finite groups, Academic Press Inc., Boston, MA (1989), xviii+424 pages
(Translated from the Japanese).

[Sch16] Schwabrow, I., The center of a block, Phd thesis, School of Mathematics, University of Manchester (2016).

[Sul08] Suleiman, I., Strongly real elements in sporadic groups and alternating groups, Jordan J. Math. Stat., 1 (2) (2008), 97–103.

[Was97] Washington, L. C., Introduction to cyclotomic fields, Springer-Verlag, Second edition, Graduate Texts in Mathematics, 83, New York (1997), xiv+487 pages.

[Whe94] Wheeler, W. W., Extended block induction, J. London Math. Soc. (2), 49 (1) (1994), 73–82.

[Wil98] Wilson, R. A., The McKay conjecture is true for the sporadic simple groups, J. Algebra, 207 (1) (1998), 294–305.

[WWT+] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Bib Ind

generated by GAPDoc2HTML