[AB80] Alperin, J. L. and Burry, D. W., Block theory with modules, J. Algebra, 65 (1) (1980), 225–233.
[BH01] Breuer, T. and Horváth, E., On block induction, J. Algebra, 242 (1) (2001), 213–224.
[BL18] Breuer, T. and Lübeck, F.,
Browse, ncurses interface and browsing applications,
Version 1.8.9
(2018)
(GAP package),
http://www.math.rwth-aachen.de/~Browse.
[CCN+85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.,
Atlas of finite groups,
Oxford University Press,
Eynsham
(1985),
xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups,
With computational assistance from J. G. Thackray).
[GAP19] GAP – Groups, Algorithms, and Programming, Version 4.10.2, The GAP Group (2019), http://www.gap-system.org.
[GM00] Gow, R. and Murray, J., Real 2-regular classes and 2-blocks, J. Algebra, 230 (2) (2000), 455--473.
[GW84] Gluck, D. and Wolf, T. R., Brauer's height conjecture for \(p\)-solvable groups, Trans. Amer. Math. Soc., 282 (1) (1984), 137–152.
[Isa76] Isaacs, I. M.,
Character theory of finite groups,
Academic Press [Harcourt Brace Jovanovich Publishers],
New York
(1976),
xii+303 pages
(Pure and Applied Mathematics, No. 69).
[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R.,
An atlas of Brauer characters,
The Clarendon Press Oxford University Press,
London Mathematical Society Monographs. New Series,
11,
New York
(1995),
xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton,
Oxford Science Publications).
[KM13] Kessar, R. and Malle, G. R., Quasi-isolated blocks and Brauer's height zero conjecture, Ann. of Math. (2), 178 (1) (2013), 447.
[LP10] Lux, K. and Pahlings, H.,
Representations of groups,
Cambridge University Press,
Cambridge Studies in Advanced Mathematics,
124,
Cambridge
(2010),
x+460 pages
(A computational approach).
[Mur06] Murray, J., Strongly real 2-blocks and the Frobenius-Schur indicator, Osaka J. Math., 43 (1) (2006), 201–213.
[Nav98] Navarro, G., Characters and blocks of finite groups, Cambridge University Press, London Mathematical Society Lecture Note Series, 250, Cambridge (1998), x+287 pages.
[NST15] Navarro, G., Solomon, R. and Tiep, P. H., Abelian Sylow subgroups in a finite group, II, J. Algebra, 421 (2015), 3--11.
[NT89] Nagao, H. and Tsushima, Y.,
Representations of finite groups,
Academic Press Inc.,
Boston, MA
(1989),
xviii+424 pages
(Translated from the Japanese).
[Sch16] Schwabrow, I., The center of a block, Phd thesis, School of Mathematics, University of Manchester (2016).
[Sul08] Suleiman, I., Strongly real elements in sporadic groups and alternating groups, Jordan J. Math. Stat., 1 (2) (2008), 97–103.
[Was97] Washington, L. C., Introduction to cyclotomic fields, Springer-Verlag, Second edition, Graduate Texts in Mathematics, 83, New York (1997), xiv+487 pages.
[Whe94] Wheeler, W. W., Extended block induction, J. London Math. Soc. (2), 49 (1) (1994), 73–82.
[Wil98] Wilson, R. A., The McKay conjecture is true for the sporadic simple groups, J. Algebra, 207 (1) (1998), 294–305.
[WWT+] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/.
generated by GAPDoc2HTML