SInducedModule(x, s)
SInducedModule(x, s, r)
The function  SInducedModule, standing for  ``string  induction'',
provides a more efficient way of r--inducing s times (and a way of
inducing s  times if the residue  r is omitted); r--induction is
explained in InducedModule.
gap> H:=Specht(4);; SInducedModule(H.P(5,2,1),3); P(8,2,1)+3*P(7,3,1)+2*P(7,2,2)+6*P(6,3,2)+6*P(6,3,1,1)+3*P(6,2,1,1,1) +2*P(5,3,3)+P(5,2,2,1,1) gap> SInducedModule(H.P(5,2,1),3,1); P(6,3,1,1) gap> InducedModule(H.P(5,2,1),1,1,1); 6*P(6,3,1,1)
Note    that    the      multiplicity    of   each     summand      of
InducedModule(x,r,...,r)  is    divisible   by   <s>!     and that
SInducedModule divides by this constant.
As with InducedModule this function can also  be applied to elements
of the Fock space  (see Specht), in  which case the quantum analogue
of induction is used.
See  also InducedModule InducedModule.  This function requires the
package ``specht'' (see RequirePackage).
GAP 3.4.4