RestrictedModule(x)
RestrictedModule(x, r_1 [, r_2, ...])
Given a module  x  for 'H'(Sym_n) RestrictedModule  returns the
corresponding  module for  'H'(Sym_{n-1}).  The  restriction of the
Specht module S(mu) is the linear combination of Specht modules
sum    'S'(<nu>)  where nu  runs    over the partitions whose
diagrams  are  obtained  by  deleting  a  node  from  the  diagram  of
mu.  If  only  nodes   of  residue r   are   deleted then  this
corresponds to first restricting  S(mu) and then taking  one of
the block components of   the restriction; this  process is  known  as
r-restriction (cf. r--induction in InducedModule).
There is also a function SRestrictedModule (see SRestrictedModule)
which provides    a faster  way of   r--restricting  s  times (and
restricting s times).
When more than one residue if given to RestrictedModule it returns
RestrictedModule(x,r_1,r_2,...,r_k)=
     RestrictedModule(RestrictedModule(x,r_1),r_2,...,r_k) 
(cf. InducedModule InducedModule). 
gap> H:=Specht(6);; RestrictedModule(H.P(5,3,2,1),4); 2*P(4,3,2,1) gap> RestrictedModule(H.D(5,3,2),1); D(5,2,2)
``Quantized'' restriction
As  with InducedModule, when RestrictedModule   is applied to  the
canonical  basis  elements  H.Pq(mu)  a  quantum   analogue  of
restriction   is  applied;      this  time,   RestrictedModule(*,i)
corresponds   to   the    action    of  the   generator       E_i of
U_q(widehat{sl_e}) on F [LLT].
See   also    InducedModule     InducedModule,    SInducedModule
SInducedModule, and SRestrictedModule   SRestrictedModule.  This
function requires the package ``specht'' (see RequirePackage).
GAP 3.4.4