CoxeterSubCoset( WF, r, [w] )
Returns the  reflection subcoset of  the Coxeter  coset WF generated by
the  reflections with roots  specified by r.  r is  a list of indices
specifying a subset  of the roots of W  where W is the  Coxeter group
CoxeterGroup(WF).  If specified,  w must be  an element of W such
that w*WF.F0Perm  normalizes the subroot system  generated by r.  If
absent,   the  default value   for  w  is ().   It    is an error, if
w*WF.F0Perm does not normalize the subsystem.
    gap> CoxeterSubCoset( CoxeterCoset( CoxeterGroup( "A", 2 ), (1,2) ), 
    >                                                              [ 1 ] );
    Error, must give w, such that w * WF.F0Perm normalizes subroot system.
     in
    CoxeterSubCoset(CoxeterCoset(CoxeterGroup("A", 2), (1,2)), [ 1 ]) 
     called from main loop
    brk> 
    gap> f4coset := CoxeterCoset( CoxeterGroup( "F", 4 ) );
    CoxeterCoset(CoxeterGroup("F", 4))
    gap> w := RepresentativeOperation( CoxeterGroup( f4coset ), 
    >                      [ 1, 2, 9, 16 ], [ 1, 9, 16, 2], OnTuples );;  
    gap> 3d4again := CoxeterSubCoset( f4coset, [ 1, 2, 9, 16], w );
    CoxeterSubCoset(CoxeterCoset(CoxeterGroup("F", 4)), [ 1, 2, 9, 16 ], 
    ( 2, 9,16)( 3, 4,31)( 5,11,18)( 6,13,10)( 7,27,28)( 8,15,12)(14,22,20)
    (17,19,21)(26,33,40)(29,35,42)(30,37,34)(32,39,36)(38,46,44)
    (41,43,45))
    gap> PrintDynkinDiagram( 3d4again );
    phi acts as ( 2, 9,16) on the component below
    D4   9
          \       
           1 - 2
          /
         16 
This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4