CoxeterGroup( WF ):Quite a few functions defined for domains, permutation groups or Coxeter groups have been implemented to work with Coxeter cosets.
Elements, Random, Representative,  Size, in:CoxeterGroup( WF ).
ConjugacyClasses(  WF  ):CoxeterGroup(WF).  Then the classes are defined to be the
     W-orbits on W F_0, where W  acts by conjugation (they coincide
     with the W F_0-orbits, W F_0 acting  by the conjugation); by the
     translation     wmapsto   wphi^{-1}  they   are     sent  to the
     phi-conjugacy classes of W.
PositionClass( WF , x ):i   such      that  x    is  an     element     of
     ConjugacyClasses(WF)[i]  (to  work  fast,  the classification of
     Coxeter groups is used).
FusionConjugacyClasses( WF1, WF  ):CoxeterSubCoset.
Print( WF ):WF.name is bound  then  this is printed,  else
     this function prints  the coset  in a form  which can  be input back
     into GAP.
InductionTable( HF, WF ):Harish-Chandra induction in the basis of almost characters:
    gap> WF := CoxeterCoset( CoxeterGroup( "A", 4 ), (1,4)(2,3) ); 
    CoxeterCoset(CoxeterGroup("A", 4), (1,4)(2,3))
    gap> Display( InductionTable( CoxeterSubCoset( WF, [ 2, 3 ] ), WF ) );
          tt | 111 21 3
    ________________
    11111 tt |   1  . .
    2111  tt |   .  1 .
    221   tt |   1  . .
    311   tt |   1  . 1
    32    tt |   .  . 1
    41    tt |   .  1 .
    5     tt |   .  . 1
Lusztig induction from a diagonal Levi:
    gap> HF := CoxeterSubCoset( WF, [1, 2], 
    >                LongestCoxeterElement( CoxeterGroup( WF ) ) );;
    gap> Display( InductionTable( HF, WF ) );
          
tt | 111 21  3
    _________________
    11111 tt |  -1  .  .
    2111  tt |  -2 -1  .
    221   tt |  -1 -2  .
    311   tt |   1  2 -1
    32    tt |   . -2  1
    41    tt |   .  1 -2
    5     tt |   .  .  1
A descent of scalars:
    gap> W := CoxeterCoset( CoxeterGroup( "A", 2, "A", 2 ), (1,3)(2,4) ); 
    CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3)(2,4))
    gap> Display( InductionTable( CoxeterSubCoset( W, [ 1, 3 ] ), W ) );
        tt | 11 2
    __________
    111 tt |  1 .
    21  tt |  1 1
    3   tt |  . 1 
CartanName( WF ):phi on the components is  put in brackets if of length
     k greater than 1, and is preceded by the order of phi^k on it,
     if this is not 1. For example  "2(A2xA2)" denotes 2 components
     of type A_2  permuted by F_0,  and such that phi^2 induces the
     non-trivial diagram automorphism on any of them, while 3D4 denotes
     an orbit of length 1 on which phi is of order 3.
    gap> W := CoxeterCoset( CoxeterGroup( "A", 2, "G", 2, "A", 2 ), 
    >                                                       (1,5,2,6) );
    CoxeterCoset(CoxeterGroup("A", 2, "G", 2, "A", 2), (1,5,2,6))
    gap> CartanName( W );
    "2(A2xA2)xG2" 
PrintDynkinDiagram( WF ):CoxeterGroup(WF) together with the
     information how WF.phi acts on it.
    gap> W := CoxeterCoset( CoxeterGroup( "A", 2, "A", 2 ), (1,3,2,4) );
    CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3,2,4))
    gap> PrintDynkinDiagram( W );
    phi permutes the next 2 components
    phi^2 acts as (1,2) on the component below
    A2    1 - 2
    A2    3 - 4 
ChevieClassInfo(  WF       ),  see the      explicit  description  in
ChevieClassInfo for Coxeter cosets.
 
ChevieCharInfo:
CharParams( WF )
 
CharName( WF )
Note that some functions for  elements of a  Coxeter group work naturally
for elements  of a  Coxeter  coset:  CoxeterWord,  PermCoxeterWord,
CoxeterLength,         ReducedInCoxeterCoset,       LeftDescentSet,
RightDescentSet, etcldots
GAP 3.4.4