Complement( U, N )
Let N and U be ag group such that N is a normal subgroup of U.
Complement returns a complement of N in U if the U splits over
N. Otherwise false is returned.
Complement descends along an elementary abelian series of U
containing N. See CNW90 for details.
gap> v4 := Subgroup( s4, [ c, d ] );
Subgroup( s4, [ c, d ] )
gap> Complement( s4, v4 );
Subgroup( s4, [ a, b ] )
gap> z4 := CyclicGroup( AgWords, 4 );
Group( c4_1, c4_2 )
gap> z2 := Subgroup( z4, [ z4.2 ] );
Subgroup( Group( c4_1, c4_2 ), [ c4_2 ] )
gap> Complement( z4, z2 );
false
gap> m9 := ElementaryAbelianGroup( AgWords, 9 );
Group( m9_1, m9_2 )
gap> m3 := Subgroup( m9, [ m9.2 ] );
Subgroup( Group( m9_1, m9_2 ), [ m9_2 ] )
gap> Complement( m9, m3 );
Subgroup( Group( m9_1, m9_2 ), [ m9_1 ] )
GAP 3.4.4