Complementclasses( U, N )
Let U and N be ag groups such that N is a normal subgroup of U.
Complementclasses returns a list of representatives for the conjugacy
classes of complements of N in U.
Note that the empty list is returned if U does not split over N.
Complementclasses descends along an elementary abelian series of U
containing N. See CNW90 for details.
gap> v4 := Subgroup( s4, [ c, d ] );
Subgroup( s4, [ c, d ] )
gap> Complementclasses( s4, v4 );
[ Subgroup( s4, [ a, b ] ) ]
gap> z4 := CyclicGroup( AgWords, 4 );
Group( c4_1, c4_2 )
gap> z2 := Subgroup( z4, [ z4.2 ] );
Subgroup( Group( c4_1, c4_2 ), [ c4_2 ] )
gap> Complementclasses( z4, z2 );
[ ]
gap> m9 := ElementaryAbelianGroup( AgWords, 9 );
Group( m9_1, m9_2 )
gap> m3 := Subgroup( m9, [ m9.2 ] );
Subgroup( Group( m9_1, m9_2 ), [ m9_2 ] )
gap> Complementclasses( m9, m3 );
[ Subgroup( Group( m9_1, m9_2 ), [ m9_1 ] ),
Subgroup( Group( m9_1, m9_2 ), [ m9_1*m9_2 ] ),
Subgroup( Group( m9_1, m9_2 ), [ m9_1*m9_2^2 ] ) ]
GAP 3.4.4