The Lattice Beis14
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:10:55 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME (required)
DIMENSION (required)
GRAM (floating point or integer Gram matrix)
DIVISORS (elementary divisors)
MINIMAL_NORM
PROPERTIES
REFERENCES
NOTES
LAST_LINE (required)
-
NAME (required)
Beis14
-
DIMENSION (required)
28
-
GRAM (floating point or integer Gram matrix)
28
18 -9 8 -4 10 -5 -6 -3 6 0 9 0 9 0 9 0 6 0 6 0 8 -1 4 -2 0 0 4 -2
-9 18 -4 8 -5 10 9 -6 -6 6 -9 9 -9 9 -9 9 -6 6 -6 6 -7 8 -2 4 0 0 -2 4
8 -4 12 -6 8 -4 1 -2 3 0 3 0 12 0 9 0 6 0 6 0 6 0 4 -2 4 -2 2 -1
-4 8 -6 12 -4 8 1 1 -3 3 -3 3 -12 12 -9 9 -6 6 -6 6 -6 6 -2 4 -2 4 -1 2
10 -5 8 -4 14 -7 1 -2 6 0 6 0 6 0 6 0 6 0 6 0 6 0 4 -2 2 -1 0 0
-5 10 -4 8 -7 14 1 1 -6 6 -6 6 -6 6 -6 6 -6 6 -6 6 -6 6 -2 4 -1 2 0 0
-6 9 1 1 1 1 26 -13 8 -4 4 -2 1 1 -3 3 -5 4 -5 4 -9 9 -4 5 6 -6 0 0
-3 -6 -2 1 -2 1 -13 26 -4 8 -2 4 -2 1 0 -3 1 -5 1 -5 0 -9 -1 -4 0 6 0 0
6 -6 3 -3 6 -6 8 -4 12 -6 8 -4 4 -2 2 -1 2 -1 0 0 0 0 0 0 3 -3 0 0
0 6 0 3 0 6 -4 8 -6 12 -4 8 -2 4 -1 2 -1 2 0 0 0 0 0 0 0 3 0 0
9 -9 3 -3 6 -6 4 -2 8 -4 18 -9 8 -4 8 -4 0 0 4 -2 0 0 0 0 0 0 6 -6
0 9 0 3 0 6 -2 4 -4 8 -9 18 -4 8 -4 8 0 0 -2 4 0 0 0 0 0 0 0 6
9 -9 12 -12 6 -6 1 -2 4 -2 8 -4 26 -13 20 -10 12 -6 12 -6 6 -3 6 -6 6 -6 6 -6
0 9 0 12 0 6 1 1 -2 4 -4 8 -13 26 -10 20 -6 12 -6 12 -3 6 0 6 0 6 0 6
9 -9 9 -9 6 -6 -3 0 2 -1 8 -4 20 -10 20 -10 10 -5 12 -6 6 -3 6 -6 3 -3 6 -6
0 9 0 9 0 6 3 -3 -1 2 -4 8 -10 20 -10 20 -5 10 -6 12 -3 6 0 6 0 3 0 6
6 -6 6 -6 6 -6 -5 1 2 -1 0 0 12 -6 10 -5 12 -6 8 -4 6 -3 6 -6 3 -3 0 0
0 6 0 6 0 6 4 -5 -1 2 0 0 -6 12 -5 10 -6 12 -4 8 -3 6 0 6 0 3 0 0
6 -6 6 -6 6 -6 -5 1 0 0 4 -2 12 -6 12 -6 8 -4 12 -6 6 -3 6 -6 0 0 3 -3
0 6 0 6 0 6 4 -5 0 0 -2 4 -6 12 -6 12 -4 8 -6 12 -3 6 0 6 0 0 0 3
8 -7 6 -6 6 -6 -9 0 0 0 0 0 6 -3 6 -3 6 -3 6 -3 12 -6 3 -3 0 0 0 0
-1 8 0 6 0 6 9 -9 0 0 0 0 -3 6 -3 6 -3 6 -3 6 -6 12 0 3 0 0 0 0
4 -2 4 -2 4 -2 -4 -1 0 0 0 0 6 0 6 0 6 0 6 0 3 0 6 -3 0 0 0 0
-2 4 -2 4 -2 4 5 -4 0 0 0 0 -6 6 -6 6 -6 6 -6 6 -3 3 -3 6 0 0 0 0
0 0 4 -2 2 -1 6 0 3 0 0 0 6 0 3 0 3 0 0 0 0 0 0 0 6 -3 0 0
0 0 -2 4 -1 2 -6 6 -3 3 0 0 -6 6 -3 3 -3 3 0 0 0 0 0 0 -3 6 0 0
4 -2 2 -1 0 0 0 0 0 0 6 0 6 0 6 0 0 0 3 0 0 0 0 0 0 0 6 -3
-2 4 -1 2 0 0 0 0 0 0 -6 6 -6 6 -6 6 0 0 -3 3 0 0 0 0 0 0 -3 6
-
DIVISORS (elementary divisors)
1^14*3^14
-
MINIMAL_NORM
6
-
PROPERTIES
INTEGRAL = 1
MODULAR = 3
-
REFERENCES
C. Bachoc, Applications of coding theory to the construction of modular lattices J. Comb. Th A 78-1 (1997) 92-119
-
NOTES
unimodular lattice over the Eisenstein integers
-
LAST_LINE (required)
Haftungsausschluss/Disclaimer
Gabriele Nebe