The Lattice J2dim14
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:16:43 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME
DIMENSION
DET
GRAM
DIVISORS
MINIMAL_NORM
GROUP_NAME
GROUP_GENERATORS
PROPERTIES
REFERENCES
NOTES
LAST_LINE
-
NAME
J2dim14
-
DIMENSION
28
-
DET
5^14
-
GRAM
28 0
8
-4 8
-4 0 8
3 1 -4 8
-1 3 2 2 8
3 -1 -4 0 -4 8
2 0 -4 4 2 2 8
2 2 -4 2 2 0 4 8
-3 -1 0 1 -3 -1 -2 -4 10
-4 2 1 -1 -2 -2 -2 -2 5 8
2 -4 1 -1 1 -1 -1 -1 -2 -4 8
-2 4 0 2 0 -2 -1 0 1 4 -2 8
-4 2 1 0 -1 -3 -1 0 2 2 0 4 8
-4 2 0 1 -1 -1 0 0 3 4 -2 2 4 8
2 -2 1 2 -1 -1 -1 0 -1 0 0 0 -1 0 8
-4 4 2 -3 3 -1 0 2 -2 1 -2 0 1 2 -2 8
-4 2 2 -2 2 -4 0 2 -1 2 -1 2 2 2 -1 2 8
-1 3 2 2 2 -2 -2 0 -1 -1 0 3 1 -1 3 -1 0 8
4 -2 -2 4 -2 0 -1 1 0 -2 0 0 1 1 5 -3 -2 1 10
2 -4 0 -3 -4 4 -2 -1 1 -2 1 -3 -2 -3 1 -2 -3 0 0 10
-4 4 1 1 1 -2 -1 0 3 4 -4 4 2 2 1 2 2 2 -1 -2 8
3 -1 -2 4 2 -1 1 2 1 -2 1 -2 -2 -1 2 -1 -2 0 4 0 0 8
-4 2 2 1 3 -1 2 -2 3 0 -2 0 2 1 -2 3 0 0 -2 -2 3 0 10
-2 -2 2 -4 -4 2 -4 -4 2 1 0 -1 0 0 0 0 0 0 -1 4 0 -2 0 8
0 -1 0 -1 -3 3 -1 -3 3 0 -2 -3 -2 0 0 0 -3 -1 1 3 -2 1 1 3 8
-1 -1 0 0 -2 2 2 -2 0 1 1 1 1 2 1 -1 -1 -1 -2 1 0 -3 0 0 0 8
-2 4 0 -1 3 1 0 0 -1 0 -2 0 -2 0 -4 4 0 0 -4 -2 1 -2 3 0 0 -1 8
2 -4 -1 -1 -2 2 1 -2 0 -2 4 -1 -1 -2 -2 -2 -2 -2 -1 2 -4 -1 -1 2 1 2 0 8
-
DIVISORS
5^14
-
MINIMAL_NORM
8
-
GROUP_NAME
C2xJ2
-
GROUP_GENERATORS
4
28 28
-2 -2 -2 -5 5 2 -3 2 3 -5 -5 3 0 1 3 -2 -2 -1 -2 -3 -2 1 0 0 -1 1 -2 1
-2 -1 0 2 -1 0 1 -1 -1 1 1 0 0 -1 -1 1 0 0 1 1 0 0 -1 0 0 0 1 -1
3 3 1 -1 -1 -1 3 -1 1 1 2 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 -1
-4 -2 -1 -3 3 2 -1 1 2 -4 -3 3 0 0 2 -1 -2 -1 -1 -2 -2 1 -1 0 -1 0 -1 0
0 -1 0 0 2 3 -2 1 1 0 -1 0 2 -1 1 0 1 0 -1 -1 -1 1 0 0 0 1 0 0
-1 -1 -1 -1 2 0 -2 1 0 -1 -2 0 0 0 0 -1 -1 0 0 -1 0 0 0 0 0 1 -1 1
-2 -2 -1 -2 3 2 -3 2 1 -2 -3 1 1 0 1 -1 -1 0 -1 -2 -1 1 0 0 0 1 -1 1
-2 -2 -1 2 -1 0 -2 0 -1 -1 -1 0 0 0 0 1 0 0 -1 0 0 0 0 -1 0 0 0 0
0 0 2 3 -3 0 1 -1 -2 3 2 -2 0 -1 -2 1 1 1 1 1 1 0 0 -1 0 -1 1 0
1 1 1 2 -3 -1 2 -2 -2 3 2 -2 0 0 -2 1 1 1 1 2 1 0 0 -1 0 -1 1 0
2 1 1 1 -1 0 0 1 0 1 2 -1 0 0 0 0 1 0 0 0 1 -1 1 0 1 0 0 0
-2 0 0 -1 -1 -1 3 -1 0 -1 1 2 -1 0 0 0 -1 -1 1 1 0 0 -1 0 0 -1 1 -1
-1 1 1 4 -6 -4 4 -2 -3 2 5 0 -3 0 -3 2 0 0 2 3 2 -2 0 0 1 -2 1 -2
0 1 1 5 -6 -3 3 -3 -4 3 4 -2 -1 0 -3 2 1 1 1 3 2 -1 0 -1 1 -2 1 -1
0 1 -2 -8 5 1 1 0 5 -6 -4 4 0 2 4 -2 -2 -1 -1 -2 -3 1 -1 1 -2 0 -1 0
1 -1 0 3 -1 1 -1 -1 -2 3 1 -2 2 -1 -1 1 2 1 0 1 1 0 0 -1 1 0 1 0
1 1 1 3 -4 -2 2 -1 -2 2 3 -1 0 0 -1 1 1 0 0 2 1 0 0 0 1 -1 2 -1
-1 1 0 -2 1 0 2 0 2 -2 0 2 -1 0 1 0 -1 -1 1 0 -1 0 -1 1 -1 0 0 -1
-3 -1 -2 -3 1 -1 1 -1 2 -5 -2 4 -2 1 2 0 -2 -1 -1 -1 -2 0 -1 0 -1 -1 -1 -1
1 1 0 1 -1 -2 0 0 -1 1 1 -1 -1 0 -1 0 0 0 1 1 1 -1 1 0 0 0 0 0
0 0 0 -2 1 1 1 -1 1 -1 -1 1 1 0 1 0 0 0 0 0 -1 1 -1 0 -1 0 1 0
-2 -2 0 1 1 2 -2 1 0 0 -1 0 1 -1 1 0 0 0 -1 -1 -1 0 0 -1 0 0 0 0
0 -1 0 -3 4 3 -1 1 2 -1 -2 1 2 -1 1 -1 0 0 0 -2 -1 1 -1 1 0 1 0 0
2 2 1 2 -2 -2 2 -1 -2 3 3 -2 0 0 -1 0 1 0 1 2 2 -1 0 0 1 -1 1 0
-1 -1 0 1 0 0 0 0 -1 2 0 -1 0 -1 -1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 -3 1 -1 2 0 1 -1 0 1 0 1 0 -1 -1 0 1 0 0 0 0 1 0 0 0 0
1 -1 0 0 3 3 -2 0 1 0 -2 -1 3 -1 1 0 1 0 -1 -1 0 1 -1 0 0 1 0 1
1 0 0 -2 2 1 0 1 1 0 0 0 1 0 1 -1 0 0 0 -1 1 0 0 0 1 0 0 1
28 28
0 -2 -1 -6 5 3 -2 1 4 -5 -5 3 1 1 3 -1 -1 0 -2 -3 -2 2 -1 0 -1 1 -1 1
-1 -1 0 3 -1 0 -1 0 -2 2 1 -1 1 -1 -1 0 1 0 0 1 1 0 0 -1 1 0 1 0
0 2 2 6 -6 -3 3 -1 -4 6 6 -3 -2 -1 -4 2 1 1 3 3 2 -2 1 0 1 -1 1 -1
0 -2 -1 -4 4 2 -1 1 3 -3 -3 2 1 0 2 -1 0 0 -1 -2 -1 1 -1 0 0 1 0 0
-2 -2 1 4 -2 -1 0 1 -2 2 2 0 -1 -1 -2 1 0 0 1 1 1 -1 0 0 1 0 1 -1
0 0 -1 -5 4 2 -2 1 3 -4 -4 2 1 1 3 -2 -1 -1 -2 -2 -2 2 0 0 -1 1 -1 1
-2 -2 -2 -6 6 2 -2 2 5 -7 -5 5 0 1 4 -2 -2 -2 -2 -3 -3 1 -1 1 -1 1 -1 0
-2 -3 -1 -2 3 2 -2 1 2 -4 -3 3 1 0 2 -1 -1 -1 -2 -2 -1 1 -1 0 0 0 0 0
2 3 0 -1 -1 -2 3 -1 0 1 2 -1 -1 0 -1 0 0 0 2 1 1 -1 0 1 0 0 0 -1
1 2 0 2 -2 -1 1 -1 -1 2 2 -2 0 -1 -1 1 1 0 1 1 1 -1 0 0 0 0 0 0
0 -1 1 2 -1 0 0 0 -1 1 0 -1 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 3 -2 0 0 -1 -2 3 2 -2 1 -1 -1 1 2 1 0 1 1 0 0 -1 1 0 1 0
1 0 -1 0 1 1 0 -1 0 1 0 -1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 -1 1 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 -2 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0
-1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 -1 -1 -1 0 0 0 0 0 1 0 0 0 0
-2 0 1 8 -7 -3 1 -1 -5 4 5 -2 -2 -1 -3 2 1 0 1 3 2 -2 1 -1 1 -2 1 -1
0 0 1 4 -4 -2 2 -1 -3 4 4 -2 0 -1 -2 1 1 1 1 2 2 -1 0 -1 2 -1 2 -1
1 -1 -1 -6 3 2 1 -1 3 -3 -3 2 1 1 2 -1 0 1 -1 -2 -1 2 -1 0 -1 0 0 0
2 2 1 0 -1 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 3 -4 -3 2 -1 -3 4 4 -2 -1 -1 -3 1 1 1 2 2 2 -1 1 0 1 0 1 -1
0 -1 0 -4 3 1 0 1 3 -3 -3 2 0 0 1 -1 -1 0 0 -2 -1 1 -1 1 -1 1 0 0
-1 0 -1 -5 4 0 1 2 2 -2 -1 3 -1 1 1 -3 -2 -1 1 -1 -1 0 0 2 0 1 0 -1
1 3 1 2 -3 -2 2 -1 -2 3 3 -2 -1 0 -1 0 0 0 1 2 1 -1 1 0 0 -1 0 0
1 3 0 -3 1 -1 1 0 2 -2 -1 1 -1 1 1 -1 -1 -1 0 0 -1 0 0 1 -1 0 -1 0
2 1 0 0 1 1 -2 1 1 0 -1 -1 1 0 1 0 1 0 -1 -1 -1 0 1 0 0 1 -1 1
0 0 1 1 0 0 0 1 -1 1 1 0 1 0 0 -1 0 -1 0 1 1 0 0 0 1 0 1 0
1 1 0 -4 3 1 1 0 3 -3 -2 2 1 1 3 -1 -1 -1 -1 -1 -2 1 -1 1 -1 0 0 0
28 28
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
-1 -1 0 1 2 2 -3 2 0 1 -1 -1 1 -1 0 0 0 0 0 -1 0 0 0 0 0 1 -1 1
2 2 1 1 -2 -1 2 -1 -1 2 2 -1 1 0 0 0 1 0 0 1 1 0 0 0 1 -1 1 0
-1 0 0 2 -1 -1 0 0 -1 1 1 -1 -1 0 -1 1 0 0 1 1 0 -1 0 0 0 0 0 0
1 0 0 0 2 2 -2 1 1 1 -1 -1 2 -1 1 0 1 0 0 -1 -1 0 0 0 0 1 0 1
0 0 0 3 -2 -2 -1 0 -2 1 1 -1 -2 0 -2 1 0 0 0 1 1 -1 1 0 0 0 -1 0
-1 0 -1 -2 2 0 -1 1 2 -3 -2 2 -1 0 1 0 -1 -1 0 -1 -2 0 0 1 -1 1 -1 0
-2 -3 -2 -8 9 5 -3 3 5 -5 -6 4 2 0 4 -3 -2 -1 -1 -4 -3 2 -1 1 -1 2 -1 1
-1 1 0 1 -4 -4 4 -2 -2 1 3 0 -3 1 -3 1 -1 1 2 2 1 -1 0 0 0 -1 0 -2
0 1 0 1 -3 -2 2 -1 -1 1 2 -1 -1 0 -2 1 0 1 1 1 1 0 0 0 0 0 0 -1
1 0 -1 -5 5 3 -1 0 4 -4 -4 2 2 1 4 -2 0 -1 -2 -2 -2 1 -1 0 -1 0 0 1
0 0 -1 -4 4 2 -1 1 3 -3 -3 1 1 1 2 -1 -1 0 -1 -2 -1 1 -1 1 -1 1 -1 1
-2 0 -1 -5 4 2 0 1 3 -4 -3 3 0 1 3 -2 -2 -1 -1 -2 -2 1 -1 1 -1 0 -1 0
0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 1 3 -3 -1 1 -1 -2 2 2 -1 0 0 -1 1 1 0 0 2 1 0 0 -1 1 -1 1 0
0 -1 0 -1 3 3 -3 2 1 0 -2 0 2 -1 1 -1 0 0 -1 -2 -1 1 0 0 0 1 -1 1
0 -1 -1 -3 4 3 -2 1 2 -2 -3 1 2 0 2 -1 0 0 -1 -2 -1 1 0 0 0 1 -1 1
0 0 0 -1 2 1 0 0 1 0 -1 0 1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 1
-2 -2 1 3 -2 0 0 0 -3 2 1 -1 0 0 -1 0 0 0 0 1 1 0 0 -1 1 -1 1 0
1 0 0 -3 1 -1 2 0 1 -1 0 2 -1 1 0 -1 -1 0 0 0 0 0 0 1 0 0 0 -1
-1 0 -1 -1 0 -1 0 0 0 -1 0 1 -1 1 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0
-1 -2 0 0 1 1 -1 1 -1 1 0 0 1 0 0 -1 0 0 0 0 0 0 0 -1 1 0 1 0
0 2 1 3 -3 -2 0 0 -2 2 2 -1 -2 0 -2 1 0 0 1 1 0 -1 1 0 0 0 -1 0
1 1 1 4 -4 -2 1 -1 -3 3 3 -2 -1 0 -2 1 1 1 0 2 2 -1 1 -1 1 -1 0 0
0 0 2 7 -6 -3 1 -1 -5 5 4 -3 -1 -1 -4 2 1 1 1 3 2 -1 1 -1 1 -1 1 -1
1 2 0 -1 0 -1 0 0 2 -3 -1 1 -1 1 1 0 0 -1 -1 0 -1 0 0 1 -1 0 -1 0
2 1 1 3 -1 0 -2 1 -1 3 1 -3 0 -1 -2 1 1 1 1 0 1 -1 1 0 0 1 -1 1
1 1 0 -3 2 0 1 0 3 -4 -2 2 0 1 2 -1 -1 -1 -1 -1 -1 0 -1 1 -1 0 0 0
28 28
2 2 1 2 -3 -2 1 0 -1 2 2 -2 -1 0 -2 1 0 1 1 1 1 -1 1 0 0 0 0 0
0 -2 -1 -4 6 4 -3 2 2 -1 -3 1 2 0 2 -2 0 0 -1 -2 -1 1 0 0 0 1 -1 1
-2 -1 0 2 -1 0 -1 0 -1 0 0 0 -1 0 -1 1 0 0 0 0 0 0 0 0 0 0 -1 0
1 0 0 -3 3 1 1 1 2 -1 -1 1 1 0 1 -1 -1 0 0 -1 0 0 -1 1 0 0 0 0
1 -1 0 -1 2 1 -1 1 1 0 -1 0 0 0 -1 0 0 1 0 -1 0 0 0 1 0 1 -1 0
0 0 0 2 -2 -1 0 0 -2 2 2 -1 0 0 0 0 0 0 0 1 1 -1 1 -1 1 -1 1 0
1 -1 0 0 -1 -1 1 0 -1 1 1 0 0 0 -1 0 0 1 0 0 1 0 0 0 1 0 1 -1
2 0 0 0 0 0 -1 1 0 1 0 -1 0 0 -1 0 1 1 0 0 0 0 1 0 0 1 0 0
-2 -1 0 -3 3 2 1 0 2 -3 -2 3 2 0 3 -2 -1 -2 -1 -1 -1 1 -2 0 0 -1 1 0
-2 -1 0 -2 3 2 -1 1 1 -2 -2 2 1 0 2 -2 -1 -2 -1 -1 -1 1 -1 0 0 0 0 0
1 2 0 1 -3 -3 3 -2 0 1 2 -1 -2 0 -2 2 0 1 2 1 0 -1 0 1 -1 0 0 -1
-2 -1 -1 -5 5 2 -1 2 3 -3 -3 3 0 0 2 -2 -2 -1 0 -2 -2 1 -1 1 -1 1 -1 0
-1 0 -1 -2 1 0 1 -1 1 -1 -1 1 0 0 1 0 0 0 0 0 -1 1 -1 0 -1 0 0 0
-1 0 0 0 0 0 2 -1 0 0 1 1 0 0 1 0 0 -1 0 1 0 0 -1 0 0 -1 1 -1
-1 1 0 1 0 -1 0 1 0 -1 0 0 -1 0 0 0 -1 -1 0 0 0 -1 0 1 0 0 -1 0
-1 -2 -1 -2 3 2 -2 1 1 -1 -2 1 1 0 1 -1 0 0 -1 -1 -1 1 0 0 0 1 0 0
0 0 0 2 -2 -1 0 -1 -1 0 1 0 -1 0 -1 1 1 0 0 1 0 0 0 0 0 0 0 -1
-1 -1 -1 -3 4 2 -2 2 2 -2 -3 1 0 0 1 -1 -1 0 0 -2 -1 0 0 1 -1 1 -2 1
0 2 0 2 -2 -2 2 -1 -1 1 2 -1 -1 0 -1 1 0 0 1 2 1 -1 0 0 0 -1 0 0
-1 1 0 1 -3 -3 1 0 -1 -1 1 1 -2 1 0 0 -1 -1 0 1 0 -1 1 0 0 -1 0 0
-1 -1 -1 -5 7 4 -3 3 4 -4 -4 3 2 0 4 -3 -1 -2 -2 -3 -2 1 -1 1 0 1 -1 1
2 1 0 -1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
-2 -3 0 0 2 2 -1 1 0 0 -1 1 2 -1 1 -1 0 0 -1 -1 0 1 -1 0 1 0 1 0
-1 1 0 1 -2 -1 1 -1 -1 0 1 0 0 0 1 0 0 -1 0 1 0 0 0 0 0 -1 1 0
-1 -1 0 1 -1 0 1 -1 -2 1 1 0 1 0 0 0 0 0 0 1 1 0 0 -1 1 -1 1 0
-1 0 -1 -4 2 -1 2 0 2 -3 -1 3 -1 1 2 -1 -2 -1 0 -1 -1 0 -1 1 0 0 0 -1
0 -2 0 -3 5 4 -3 2 2 -1 -3 1 2 0 2 -2 0 0 -1 -2 -1 1 0 0 0 1 0 1
-1 0 -1 -5 1 -1 3 -1 2 -3 -1 3 -1 1 1 -1 -2 0 1 -1 -1 1 -1 1 -1 0 1 -1
-
PROPERTIES
MODULAR = 5
5-modular extremal.
-
REFERENCES
Constructed by Gabriele Nebe <gabi@momo.math.rwth-aachen.de>
-
NOTES
Superlattice of the lattice of the maximal finite group [ +-J2:2 ]_{28}
of index 3, not invariant under the outer automorphism.
The endomorphism ring as a ZJ2-lattice is only a suborder of index 3 in the
maximal order of Q[sqrt{5}].
-
LAST_LINE
Haftungsausschluss/Disclaimer
Gabriele Nebe