The Lattice LAMBDA(F)
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:17:37 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME
DIMENSION
GRAM
DET
MINIMAL_NORM
MINVECS
KISSING_NUMBER
DENSITY
HERMITE_NUMBER
GROUP_ORDER
GROUP_GENERATORS
BACHER_POLYNOMIALS
PROPERTIES
REFERENCES
NOTES
LAST_LINE
-
NAME
LAMBDA(F)
-
DIMENSION
32
-
GRAM
32 0
4
-2 4
-2 0 4
-2 0 2 4
1 -2 1 -1 4
-2 1 2 0 0 4
-2 0 2 2 1 0 4
1 -2 -1 -1 0 -1 -1 4
-2 2 2 1 0 1 2 -1 4
-2 2 0 1 -2 0 0 -1 0 4
-2 0 2 1 1 2 2 0 2 0 4
1 1 0 0 0 -1 -1 -1 0 0 -1 4
-2 0 1 1 1 1 2 -1 1 0 2 -1 4
-2 1 2 1 0 2 1 -1 2 1 2 0 1 4
1 0 -2 -2 0 0 -2 1 -1 0 0 0 -1 0 4
-2 1 1 1 -1 1 1 -1 0 2 1 -1 1 1 -1 4
-2 2 1 0 -1 1 0 0 1 2 0 0 0 1 0 1 4
1 -2 1 0 1 1 -1 0 -1 -1 0 0 0 1 0 0 -1 4
-1 0 1 1 1 1 1 -1 1 0 2 0 1 2 1 0 0 1 4
-1 1 -1 -1 -1 0 0 1 0 1 0 -1 0 -1 0 1 1 -2 -1 4
-1 1 -1 0 -2 0 0 1 0 1 0 -1 0 -1 0 1 1 -2 -1 2 4
1 1 -2 -1 -1 -1 -2 0 -1 0 -2 1 -1 -1 1 0 0 0 -1 0 0 4
1 -2 1 0 1 1 -1 0 -1 -1 0 0 0 0 0 -1 -1 2 0 -1 -1 -1 4
-2 1 1 0 0 2 1 -1 1 1 2 -1 1 2 1 1 1 0 2 0 0 -1 0 4
1 -2 1 1 2 0 1 0 0 -2 1 0 0 0 -1 -1 -2 1 1 -1 -2 -1 1 -1 4
1 0 -1 0 0 -1 -1 -1 -1 1 -1 1 -1 -1 0 0 -1 0 0 0 0 0 1 -1 0 4
-2 2 1 1 0 0 2 -2 2 1 1 1 2 1 -1 1 1 -1 1 0 0 0 -1 1 -1 0 4
0 0 1 0 1 1 0 -1 0 0 1 0 0 1 0 1 0 1 1 -1 -2 0 0 1 1 0 0 4
1 1 -2 -2 0 -1 -1 0 0 0 -1 1 -1 -1 1 -1 0 -1 -1 1 0 1 -1 0 -1 1 0 0 4
-1 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 -2 0 1 2 -1 -1 0 -1 0 1 -2 0 4
-2 0 1 2 0 0 2 -1 0 1 1 0 2 0 -1 1 0 0 1 0 0 -1 0 1 0 0 2 0 -1 0 4
0 0 1 0 0 0 0 0 0 1 0 1 -1 0 -1 0 0 0 -1 0 0 -1 1 0 0 1 0 -1 0 1 0 4
-
DET
1
-
MINIMAL_NORM
4
-
MINVECS
-
KISSING_NUMBER
146880
-
DENSITY
-
HERMITE_NUMBER
4
-
GROUP_ORDER
2^31 * 3^5 * 5^2 * 7
-
GROUP_GENERATORS
4
32 32
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 1 -1 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 -1 -1 0 -1 0 0 -1 0 -1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-3 2 1 -1 -1 -6 -2 -4 -4 -5 5 -2 -1 2 -1 -2 2 1 -1 1 0 0 0 0 -1 1 -1 0 -1 0 0 0
1 2 1 1 0 -1 0 0 -1 -1 0 -1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1
16 -19 -8 3 1 33 10 16 24 22 -25 11 6 -10 3 10 -7 -10 7 -4 -2 2 0 1 2 -3 3 1 2 -1 1 -1
-16 21 7 -2 -1 -34 -10 -16 -25 -24 26 -12 -6 10 -3 -10 8 11 -7 4 2 -2 0 -1 -2 3 -3 -1 -2 1 -1 1
-1 -5 -2 -1 0 2 -1 -1 3 2 0 1 -1 -1 -1 1 0 -2 1 -1 -1 0 0 -1 -1 -1 0 0 0 0 0 0
-3 1 0 -1 -1 -4 -1 -3 -3 -3 4 -1 -1 1 -1 -1 1 1 0 0 0 0 0 -1 -1 0 -1 0 0 0 0 0
-2 7 2 1 1 -7 -1 -2 -6 -4 5 -2 -1 2 0 -3 1 4 -3 2 1 -1 0 1 0 1 0 0 -1 0 -1 -1
7 -11 -6 2 1 17 5 7 13 11 -12 6 3 -6 1 5 -3 -5 4 -2 -1 1 0 0 0 -2 1 1 1 -1 0 0
-1 0 -1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0
15 -23 -7 1 0 34 10 15 26 23 -26 12 7 -11 3 10 -7 -11 8 -4 -2 3 -1 1 2 -2 2 1 2 -1 1 -1
3 -1 -3 2 1 5 3 3 4 3 -4 2 1 -2 1 2 -1 0 1 0 0 0 1 0 0 -1 0 1 0 0 0 0
4 -4 -3 2 2 9 3 5 7 7 -8 3 1 -3 1 3 -3 -2 2 -1 0 0 1 0 0 -2 1 1 1 0 0 0
-3 5 2 0 0 -8 -3 -4 -6 -6 6 -3 -1 3 0 -3 2 3 -3 2 1 -1 -1 0 0 1 0 0 -1 0 0 0
3 -4 -1 1 0 5 1 2 4 4 -4 2 1 -1 1 1 -1 -1 0 0 0 0 -1 1 1 0 1 0 0 0 0 -1
1 6 0 2 1 -3 0 0 -3 -3 2 -2 0 1 1 0 1 2 -1 1 0 -1 1 0 0 0 0 0 0 0 0 1
-2 6 0 2 1 -5 0 -1 -4 -4 2 -2 0 1 1 -1 1 3 -1 1 1 -1 1 0 0 0 0 1 0 0 -1 1
0 -3 0 -1 0 3 0 1 2 3 -2 1 0 -1 0 0 -1 -1 0 -1 0 0 -1 0 1 0 1 0 0 0 0 -1
4 -11 -3 -1 0 13 3 5 10 10 -9 5 2 -4 0 3 -3 -5 3 -2 -1 1 -1 0 0 -1 1 0 0 -1 0 -1
3 0 0 1 1 3 1 2 2 2 -3 1 1 0 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
17 -24 -8 1 0 37 11 17 28 26 -28 13 7 -12 3 11 -8 -12 8 -5 -2 3 0 2 3 -3 3 1 2 -1 1 -1
-3 8 1 1 1 -8 -1 -2 -6 -5 5 -3 -1 2 0 -2 1 4 -2 1 1 -1 1 0 0 0 0 0 0 0 -1 0
0 1 0 1 0 -1 -1 -1 -1 -2 1 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
-1 5 3 0 0 -5 -1 -1 -5 -3 3 -2 0 2 0 -2 1 2 -2 1 1 0 0 1 1 1 0 0 0 0 0 0
-2 5 2 0 0 -6 -1 -2 -5 -4 4 -2 0 2 0 -2 1 2 -1 1 1 0 0 0 0 1 -1 0 0 0 0 0
-1 7 1 2 1 -7 -2 -3 -6 -6 5 -3 -1 3 0 -2 2 3 -2 2 1 -1 0 0 0 0 0 0 0 0 0 1
-4 9 3 0 1 -11 -3 -4 -9 -7 8 -4 -2 4 -1 -3 2 4 -3 1 1 -1 0 0 0 1 -1 -1 0 0 0 0
10 -16 -5 1 0 24 8 11 18 17 -18 9 5 -8 2 6 -5 -7 5 -3 -1 2 -1 1 1 -1 1 1 1 -1 0 -1
-11 18 6 -1 0 -25 -7 -10 -19 -17 18 -9 -4 7 -2 -7 5 8 -5 3 1 -2 1 0 -1 2 -2 -1 -1 1 -1 0
1 0 -1 0 0 3 2 3 2 3 -2 2 1 -2 0 1 -1 0 0 -1 0 0 1 1 1 0 0 0 0 0 -1 -1
32 32
-36 55 18 -3 -1 -81 -23 -35 -61 -56 60 -29 -15 25 -6 -23 17 27 -18 10 4 -6 2 -2 -4 6 -6 -2 -4 4 -2 2
33 -43 -15 5 2 69 20 32 51 47 -52 24 13 -21 5 20 -15 -22 15 -8 -4 5 -1 3 3 -5 5 2 4 -2 2 -2
21 -31 -11 2 1 47 13 21 36 33 -36 17 9 -15 4 14 -10 -15 10 -6 -2 3 -1 2 4 -4 4 1 2 -2 1 -1
18 -28 -8 1 0 41 12 18 31 29 -31 15 8 -13 4 12 -9 -14 9 -5 -2 3 -1 1 3 -3 3 1 2 -2 1 -1
-11 16 4 -1 0 -23 -6 -10 -17 -16 16 -8 -4 7 -1 -7 5 9 -6 3 2 -2 0 0 0 2 -1 0 -2 1 -1 1
20 -31 -11 2 1 45 12 19 34 31 -33 16 8 -14 3 13 -9 -15 10 -6 -2 3 -1 1 2 -4 4 1 2 -2 1 -1
22 -39 -13 0 0 55 16 24 43 39 -42 21 10 -18 4 16 -12 -18 12 -7 -3 4 -1 2 4 -4 4 2 2 -2 1 -2
-22 28 12 -4 -2 -47 -15 -22 -35 -32 36 -17 -9 15 -4 -14 10 14 -10 5 3 -3 0 -2 -2 4 -3 -2 -2 1 -1 1
30 -44 -14 2 1 67 19 31 51 47 -52 24 13 -21 5 20 -15 -22 15 -9 -3 5 -1 3 5 -5 5 2 4 -2 2 -2
17 -28 -11 2 1 41 12 17 31 28 -29 15 6 -13 2 12 -9 -14 10 -5 -3 3 0 0 0 -4 2 1 2 -2 1 -1
15 -32 -10 -1 0 41 10 16 32 29 -30 15 6 -13 2 12 -9 -15 10 -6 -2 3 -1 0 2 -4 4 1 2 -2 1 -1
-1 9 2 3 1 -8 -2 -2 -7 -7 5 -4 -1 3 1 -2 2 4 -3 2 0 -1 0 1 0 1 0 0 0 1 0 1
10 -20 -7 0 0 26 8 10 20 18 -19 10 5 -8 2 7 -5 -9 6 -3 -1 2 -1 0 1 -2 2 1 1 -2 0 0
23 -36 -14 2 1 55 16 25 42 38 -42 20 10 -18 4 17 -12 -18 13 -8 -3 3 0 1 3 -5 4 2 3 -2 1 -1
-12 20 6 -1 0 -28 -8 -12 -22 -20 22 -11 -6 9 -3 -8 6 9 -5 3 1 -2 1 -2 -3 2 -2 -1 -1 1 0 1
18 -30 -10 1 0 42 11 17 32 29 -30 15 7 -13 2 12 -9 -15 10 -5 -3 3 -1 0 1 -4 3 1 2 -2 1 -1
20 -27 -10 3 1 42 12 19 32 29 -31 15 8 -13 3 12 -9 -13 9 -5 -2 3 -1 2 2 -3 3 1 2 -2 1 -1
-16 25 7 -1 0 -36 -10 -16 -27 -25 27 -13 -6 11 -2 -10 8 12 -8 4 2 -3 1 -2 -2 2 -3 -1 -2 1 -1 2
9 -14 -6 1 1 22 6 10 17 15 -17 8 4 -7 2 7 -5 -7 5 -3 -1 1 0 0 1 -2 2 1 1 -1 1 0
6 -15 -3 -1 -1 16 3 5 13 11 -11 6 2 -4 0 4 -3 -7 4 -2 -1 2 -1 0 0 -1 1 0 1 -1 1 -1
6 -15 -3 -1 -1 16 3 5 13 11 -10 6 2 -5 0 4 -3 -7 4 -2 -1 2 -1 0 0 -1 1 0 1 -1 1 -1
-2 15 5 3 1 -14 -3 -4 -13 -11 10 -7 -1 6 0 -5 3 6 -4 3 1 -1 0 0 -1 2 -1 0 0 1 0 1
-17 26 8 -1 0 -39 -11 -18 -29 -27 29 -14 -7 12 -2 -11 9 13 -8 5 3 -3 1 -2 -2 2 -3 -1 -2 1 -1 2
16 -24 -10 2 2 37 10 16 28 26 -27 13 6 -12 2 11 -8 -12 9 -5 -2 2 0 0 1 -4 3 1 2 -2 1 -1
-7 6 3 -2 -1 -11 -3 -5 -8 -7 7 -3 -2 3 0 -3 2 4 -3 1 1 -1 0 0 1 1 0 0 -1 1 -1 0
-8 13 4 0 0 -19 -5 -9 -14 -14 14 -7 -4 6 -1 -5 4 6 -4 3 1 -1 1 -1 -2 1 -2 0 -1 1 0 1
21 -26 -10 4 2 43 13 20 32 29 -33 15 9 -13 4 12 -9 -13 9 -4 -2 3 -1 2 2 -3 3 2 2 -2 1 0
0 4 0 1 1 -1 0 1 -2 0 0 -1 0 0 0 0 -1 1 0 0 0 -1 1 0 0 -1 1 0 0 0 -1 0
-5 5 3 -1 -1 -10 -3 -5 -7 -7 7 -4 -2 3 -1 -3 2 3 -2 1 0 0 0 0 -1 1 -1 0 0 1 0 0
11 -25 -9 0 0 31 8 12 25 21 -22 12 4 -10 1 9 -6 -11 7 -4 -2 3 -1 1 1 -2 2 1 1 -1 1 -1
7 -11 -4 1 1 16 5 6 12 11 -11 6 3 -5 2 4 -3 -5 3 -1 -1 1 -1 0 0 -1 1 0 0 -2 0 0
0 -2 -2 1 1 2 0 0 2 1 -1 1 -1 -1 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
32 32
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-4 -1 1 -2 -1 -4 -2 -3 -2 -2 3 -1 -1 1 -1 -1 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
4 1 -1 3 2 4 2 3 2 2 -3 1 1 -1 1 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
-1 0 0 0 0 -2 -1 -2 -2 -2 3 -1 -1 1 -1 -1 1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0
3 -4 -4 1 1 7 2 3 6 5 -5 3 1 -3 0 3 -1 -2 2 -1 -1 0 1 0 0 -1 0 0 0 0 0 0
-1 3 0 0 0 -2 1 0 -1 -1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 -1 0 0 0 0 0
-1 8 2 2 1 -8 -3 -3 -7 -6 6 -4 -1 3 0 -2 2 3 -2 1 1 -1 0 0 0 0 0 0 0 0 0 1
10 -14 -7 2 1 23 7 11 18 16 -18 9 4 -8 2 7 -5 -6 4 -3 -1 1 0 2 2 -2 2 1 1 0 0 -1
16 -24 -7 1 0 36 11 16 27 25 -27 13 7 -11 3 10 -8 -12 8 -4 -2 3 -1 1 2 -2 2 1 2 -1 1 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6 -7 -3 1 0 12 5 6 9 8 -9 5 3 -4 1 3 -2 -3 2 -1 -1 1 0 1 0 0 0 1 0 0 0 0
32 32
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 2 1 2 2 2 -3 1 1 -1 1 1 -1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
-1 0 0 0 0 -2 -1 -2 -2 -2 3 -1 -1 1 -1 -1 1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2 0 0 -1 -1 -3 -2 -2 -2 -2 3 -1 -1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
-3 -1 1 -2 -2 -3 -1 -3 -2 -2 3 -1 -1 1 0 -1 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
4 1 -1 3 2 4 2 3 2 2 -3 1 1 -1 1 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
-6 10 5 -1 0 -15 -5 -7 -12 -10 12 -6 -3 5 -1 -4 3 4 -3 1 1 -1 0 -1 -1 1 -1 -1 0 0 0 0
-8 5 1 -2 -1 -12 -3 -7 -8 -8 10 -3 -3 3 -1 -4 3 4 -3 1 1 -1 0 -1 -1 1 -1 0 -1 0 -1 0
5 -11 -4 0 0 13 3 4 10 9 -8 5 2 -4 0 3 -2 -5 3 -1 -1 1 -1 0 0 -1 1 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
4 -12 -4 -1 -1 14 4 5 11 10 -9 6 1 -5 0 4 -3 -5 3 -2 -2 1 0 0 0 -1 1 0 0 0 0 -1
-
BACHER_POLYNOMIALS
1 32
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
x^5544*120 x^4968*1120 (69120x)
1 32
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
x^5544*1240 (4320x)
-
PROPERTIES
Unimodular=1
-
REFERENCES
H. Koch, B. B. Venkov,
\"Uber ganzzahlige unimodulare euklidische Gitter.
Journal f\"ur die reine und angewandte Mathematik 398 (1989), 144-168
H. Koch, B.B. Venkov, \"Uber gerade unimodulare
Gitter der Dimension 32, III
Mathem. Nachr. 152 (1991), 191-213
-
NOTES
-
LAST_LINE
Haftungsausschluss/Disclaimer
Gabriele Nebe