The Lattice L_36,4sup1
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:18:04 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME
DIMENSION
GRAM
DIVISORS
MINIMAL_NORM
KISSING_NUMBER
HERMITE_NUMBER
GROUP_ORDER
GROUP_NAME
GROUP_GENERATORS
PROPERTIES
REFERENCES
NOTES
LAST_LINE
-
NAME
L_36,4sup1
-
DIMENSION
36
-
GRAM
36 0
6
2 6
0 1 6
-3 0 1 6
1 2 0 1 6
1 2 0 0 2 6
0 -1 1 1 -1 -1 6
1 1 1 -1 -1 -1 0 6
1 0 1 1 1 0 0 3 6
-1 -1 2 1 0 -2 1 2 3 6
0 -1 0 0 -3 -3 0 2 1 1 6
0 1 3 0 -1 0 0 1 1 1 1 6
0 2 -1 -1 0 2 -2 0 -1 -2 0 -1 6
0 0 0 1 -1 1 1 0 0 -2 0 0 1 6
1 1 0 0 0 1 0 -1 -1 -2 0 0 0 2 6
-1 1 -2 0 1 2 -2 -1 -2 -2 -1 -1 3 1 1 6
-1 0 1 -1 -2 -2 0 0 -2 -1 0 1 0 1 2 0 6
1 1 0 0 -1 0 2 -2 -2 -1 0 -1 0 1 1 0 0 6
3 2 0 0 3 2 0 0 1 -1 -1 -1 1 0 0 0 -2 1 6
1 -1 -2 -1 0 0 0 -2 -2 -2 -1 -2 -1 -1 1 1 0 2 0 6
-2 0 0 1 -1 1 0 1 2 2 1 0 0 1 -1 0 -1 0 -2 -2 6
0 1 0 -1 1 2 0 -2 -3 -2 -1 1 2 0 0 2 1 0 0 1 -1 6
1 -1 -2 -1 0 0 0 -1 -1 -1 0 -1 0 1 -2 -1 -2 1 0 1 0 1 6
1 1 1 -1 0 1 2 1 1 0 0 2 0 2 1 -1 0 2 1 -1 1 1 0 6
1 -2 -1 -2 -2 0 0 0 -1 -2 1 1 0 1 1 0 1 0 0 2 -1 1 1 1 6
1 2 -1 -1 0 0 2 0 -1 -2 0 0 2 0 0 1 1 1 1 0 -1 2 -1 1 -1 6
0 3 0 -1 0 2 -2 1 0 -1 0 0 2 0 2 2 1 0 -1 -1 3 0 -2 0 -1 1 6
2 3 1 0 2 2 1 0 1 0 -3 -1 1 2 0 0 0 2 2 -1 1 0 0 2 -2 1 1 6
-1 -2 -1 1 -1 -2 2 -1 -1 0 0 -1 -1 -1 0 0 1 0 0 1 -2 -1 -2 -2 0 2 -2 -2 6
0 -1 1 -1 -1 1 -2 1 2 1 0 1 1 1 -2 -1 -1 -2 -1 -2 2 -1 1 0 1 -3 0 1 -3 6
1 1 1 0 0 1 -1 2 2 1 0 -1 1 2 1 1 0 0 0 -1 2 -2 -1 0 0 -2 2 3 -3 3 6
-1 1 0 1 -1 1 -1 1 1 -1 2 2 0 1 2 1 0 0 0 -1 2 -1 -1 1 1 0 3 -2 -1 -1 0 6
-3 -1 -1 2 -2 -2 1 0 -1 0 1 -1 0 1 -1 1 1 1 -2 0 1 -1 0 -1 -2 2 0 -1 2 -2 -1 1 6
-1 -2 0 -1 -3 -2 -1 -1 -2 0 1 0 -1 -1 1 0 3 0 -3 1 0 -1 -1 -3 2 -2 1 -2 1 1 1 0 0 6
3 1 0 -2 2 1 0 1 1 1 -1 0 0 -1 -2 -1 -2 0 2 1 -1 2 2 2 0 0 -2 2 -2 1 0 -3 -3 -3 6
-2 -1 2 1 -3 -2 0 3 2 3 2 2 -2 0 -1 -2 1 -1 -3 -2 3 -3 -1 0 0 -2 1 -1 -1 2 2 2 2 2 -2 6
-
DIVISORS
2^18
-
MINIMAL_NORM
6
-
KISSING_NUMBER
164160
-
HERMITE_NUMBER
4.24264
-
GROUP_ORDER
2^4 * 3^2 * 5 * 19
-
GROUP_NAME
SL_2(19):2
-
GROUP_GENERATORS
2
36 36
0 1 1 0 0 0 0 0 1 -1 -1 0 1 1 0 0 -1 -1 0 0 1 -1 0 1 0 0 -1 -1 -1 -2 -1 -1 1 3 1 0
0 0 0 0 0 0 1 -1 1 -1 1 0 0 0 0 2 1 0 1 0 -1 -1 1 0 0 -1 2 0 0 0 -2 -2 -1 -1 0 3
0 0 0 -1 0 0 1 0 0 0 0 1 0 -1 1 0 0 0 0 -1 1 -1 -1 -2 2 -2 0 1 -1 0 -1 0 3 -1 1 -2
1 -1 -1 -1 1 0 0 1 -2 1 1 1 1 0 0 -1 0 0 -1 1 1 0 -2 -2 0 -1 -2 3 -1 0 -1 2 0 -1 -1 -1
-1 1 1 0 0 1 0 -1 1 1 1 -1 0 1 0 1 0 -1 0 0 -1 -2 1 1 1 1 1 0 -1 -1 -2 -1 0 2 1 0
0 0 0 -1 0 -1 1 0 0 -1 0 0 1 0 0 0 -1 -1 0 0 0 0 -1 0 0 -2 0 2 0 -1 -1 1 1 1 1 0
0 -1 0 0 0 0 0 0 -1 0 0 2 1 0 0 -1 -1 -1 0 0 1 -1 -1 -1 1 -1 0 2 -1 -2 0 0 2 1 1 -2
0 1 -1 0 -2 -1 0 -2 1 -1 -2 1 -1 1 -2 0 1 1 2 0 0 1 1 1 -2 0 2 -6 1 -1 4 -3 -3 -3 -2 2
1 1 -1 -1 0 -1 1 -1 0 -1 -1 1 1 0 -1 -1 0 0 0 0 1 1 -1 0 -1 -2 -1 -2 0 -1 2 0 0 -1 -1 0
0 1 0 0 0 1 0 -1 0 1 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 0 1 1 0 -2 -1 0 1 -1 0 -1 -1 -1
1 0 -1 0 0 0 0 0 0 -1 -1 1 0 0 -1 -1 1 1 0 0 1 1 0 0 -2 0 -1 -3 1 0 3 0 -1 -1 -1 0
1 -1 -1 -1 0 -1 2 0 0 -1 0 1 0 -1 1 0 0 1 0 -1 0 1 -2 -3 1 -3 1 1 -1 1 -1 0 2 -3 0 0
-1 1 0 0 -1 0 0 -1 2 -1 0 -1 -1 0 0 2 1 0 2 0 -1 1 3 2 -2 1 1 -2 2 0 1 -2 -3 0 -1 4
0 -1 -1 -1 0 -1 1 0 0 -1 0 1 1 0 0 0 0 1 0 0 0 1 -1 -2 -1 -2 0 1 0 -1 0 0 -1 -2 0 2
-1 -1 -1 -1 1 0 2 0 0 -1 2 1 1 0 0 0 0 0 0 1 -2 1 0 -1 -1 -3 2 3 2 1 -1 1 0 -1 1 2
-1 0 0 0 0 1 0 0 1 0 1 -1 0 1 0 1 0 0 0 0 -1 -1 0 0 0 1 0 1 -1 -1 -2 -1 -2 1 0 2
-1 -1 0 0 0 0 0 1 0 0 1 0 -1 -1 1 1 0 1 0 0 -1 1 1 -1 0 0 1 2 1 2 -1 0 -1 -2 -1 1
0 -1 1 0 1 0 0 1 0 -1 0 1 2 0 1 0 -1 -1 0 0 2 -2 -1 -1 1 0 -2 2 -2 -2 -2 0 2 3 2 -1
0 0 0 -1 0 -1 0 0 1 -1 -1 1 2 1 0 -1 -2 -1 0 0 1 0 -1 0 0 -1 -1 1 -1 -3 -1 0 1 3 1 0
-1 0 1 0 1 1 -1 1 0 0 1 -1 1 1 1 0 -2 -1 -1 0 0 -1 -1 0 1 1 -2 3 -1 -1 -3 1 1 4 2 0
1 0 0 0 0 0 0 0 -1 0 0 0 0 -1 -1 0 1 0 -1 0 1 -1 -1 0 0 0 -2 0 -1 0 1 1 0 -1 -1 -2
-1 0 1 0 0 1 0 0 1 0 1 -1 -1 0 1 2 0 0 0 -1 -1 -1 1 0 1 1 1 1 0 0 -2 -1 0 1 1 1
0 1 1 1 -1 0 -1 -1 1 0 -1 -1 -1 0 0 1 1 0 1 0 0 0 2 2 -1 2 1 -4 1 0 2 -2 -1 0 0 1
0 -1 -1 -1 0 -2 2 -1 1 -2 -1 2 1 0 0 0 0 1 1 -1 0 1 -1 -2 0 -3 2 -1 0 -1 1 -1 1 -2 1 1
0 0 0 0 -1 -1 0 1 1 -1 -2 0 0 0 1 0 -1 1 0 -1 1 1 -1 -1 0 0 -1 -1 -1 0 0 0 1 1 1 -1
0 -1 0 0 0 0 0 0 0 -1 1 1 1 0 0 0 -1 -1 0 0 0 0 0 0 0 -1 0 3 0 -2 -1 0 0 1 0 1
0 0 0 0 0 0 1 0 0 -1 1 0 0 -1 0 1 1 0 0 0 0 -1 0 0 0 -1 0 1 0 1 -1 0 0 -1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 -1 0 0 1 -2 0 0 1 0 -1 1 -2 -2 -2 -1 0 1 0 0
0 -1 0 0 1 1 -1 1 -1 1 1 0 1 1 0 -1 -2 -1 -1 1 0 0 -1 0 0 1 -2 4 -1 -1 -2 2 0 3 0 0
1 1 0 0 -1 -1 0 0 0 0 -2 -1 -1 -1 0 0 1 1 0 -1 1 1 0 0 0 0 -1 -3 0 1 2 0 0 -2 -1 -1
0 1 0 0 -1 0 0 0 0 0 -1 0 0 0 -1 0 1 0 0 0 1 -1 0 0 0 0 -1 -2 -1 -1 1 -1 -1 -1 -1 -1
1 -1 -2 -1 0 -2 2 0 0 -2 0 2 1 -1 0 -1 0 1 0 0 0 2 -2 -2 -1 -4 1 1 1 1 1 1 1 -3 0 0
0 -1 -1 0 0 0 -1 0 -1 0 1 1 0 0 -1 -1 0 0 0 1 0 1 0 0 -1 0 0 1 1 -1 2 0 -2 -2 -2 1
0 0 1 1 0 1 -1 2 -1 1 0 -1 -1 -1 1 0 0 0 -1 0 1 -1 0 0 1 2 -2 1 -1 2 -1 1 1 1 0 -3
0 1 1 0 0 0 0 -1 1 0 -1 -1 0 1 0 1 0 0 0 -1 0 -1 0 0 1 1 0 -2 -1 -1 -1 -1 0 1 1 1
1 0 -1 0 -1 -1 0 0 -1 0 -1 1 -1 -1 -1 -1 1 1 0 0 1 1 -1 -1 0 -1 0 -2 0 1 3 0 0 -4 -2 -2
36 36
-1 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 -1 0 0 0 -1 0 -1 0 -1 2 -1 1 1 0 0 0 0 3 0 2 -2
0 0 -1 -1 0 -1 1 -1 0 -1 -1 2 1 0 0 -1 0 1 0 -1 1 0 -1 -2 1 -2 1 -1 0 -1 1 -1 1 -2 1 0
-1 1 0 0 -2 -1 0 -1 2 -1 -2 1 -1 0 0 0 0 1 2 -1 0 1 1 0 0 0 2 -4 0 -1 3 -3 0 -1 0 0
1 -1 -1 -1 0 -1 1 0 -1 -1 0 1 1 0 0 -1 0 1 -1 0 1 1 -3 -3 0 -2 -1 1 -1 0 0 1 0 -3 0 0
0 0 0 0 0 0 -1 1 -1 1 0 1 0 0 0 -2 -1 0 -1 0 1 0 -1 0 1 0 -1 1 0 0 1 1 2 1 0 -4
0 0 0 0 0 0 0 -1 0 0 0 1 0 0 -1 -1 0 0 0 0 0 0 0 0 1 -1 2 -1 1 -1 2 -1 1 -1 0 -1
-1 1 1 0 -1 1 -1 0 1 0 0 -1 -1 0 0 1 1 0 0 0 1 -1 1 0 0 2 -2 -1 -1 -1 0 -1 -2 0 -1 0
-1 0 0 -1 0 0 1 -1 1 -1 1 1 1 0 0 0 0 -1 1 0 -1 0 1 0 0 -2 2 1 1 -1 0 -1 1 0 1 1
-1 -1 -1 -1 0 0 0 -1 0 0 2 1 0 0 -1 -1 0 0 0 1 -3 2 1 0 -1 -2 3 2 3 0 2 0 -1 -3 -1 2
-1 0 0 -1 0 0 0 0 1 0 1 0 0 0 1 0 -1 0 0 0 -1 1 0 -1 0 0 0 2 0 0 -1 0 0 0 0 1
0 0 -1 0 0 -1 1 -1 1 -1 0 -1 0 0 0 1 1 1 1 0 -2 2 1 0 -2 -1 2 -1 2 2 0 0 -2 -2 0 4
-1 1 -1 0 -2 -1 0 -2 2 -1 -1 1 -1 1 -2 0 0 0 2 0 -2 2 2 2 -2 -1 4 -4 2 -2 4 -3 -2 -1 -1 2
0 0 -1 0 0 0 0 -1 0 0 0 0 0 1 -1 0 0 0 1 1 -1 1 1 1 -1 0 2 -1 2 0 1 -1 -2 -1 -1 3
0 0 0 0 0 1 0 -1 0 -1 1 0 0 0 -1 1 1 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 -1 -1 -1 0 2
1 0 0 0 0 -1 0 1 -1 0 -1 0 0 -1 0 -1 0 1 -2 -1 1 0 -2 -2 2 -1 -1 1 -1 1 0 2 2 -2 0 -3
1 0 0 0 1 0 0 0 -1 0 0 0 1 1 -1 -1 -1 -1 -1 0 1 -1 -2 0 1 0 -1 1 -1 -1 -1 1 1 2 1 -1
0 1 1 1 -1 1 -1 0 0 1 -1 -1 -1 1 -1 1 0 -1 0 0 0 -2 1 2 0 3 -1 -2 -2 -1 0 -1 -1 2 -1 -1
0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 1 0 0 0 0 2 -1 0 0 0 2 -3 -1 -1 0 -1 0 -1 1 0 1
0 0 0 0 0 -1 0 0 -1 0 0 1 0 -1 1 -1 0 0 0 0 1 0 0 -1 1 -1 0 1 1 1 1 1 2 -1 1 -2
1 0 1 1 1 0 -1 2 -1 1 -1 -1 0 0 1 0 0 0 -1 0 2 -1 -1 0 1 2 -3 0 -2 1 -2 1 1 2 0 -2
-1 0 0 0 0 1 0 -2 1 0 2 -1 -1 0 -1 2 1 0 1 1 -3 1 3 2 -2 1 3 -1 3 1 1 -2 -4 -2 -2 5
0 1 0 1 -1 0 -1 0 1 0 -2 0 -1 1 -1 0 0 0 1 0 1 0 1 2 -1 2 0 -4 0 -1 2 -2 -1 2 -1 -1
-1 0 0 0 1 1 0 0 1 -1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 -1 0 0 0 1 0 -1 -1 0 2 1 2
-1 1 0 0 -1 0 -1 -1 1 0 0 0 -1 0 -1 1 1 0 1 1 -1 1 3 2 -2 1 1 -2 3 0 3 -1 -3 -1 -2 2
-1 2 1 2 -1 1 -1 -1 1 1 0 -2 -3 0 -1 2 2 -1 2 1 -2 0 5 5 -2 3 3 -5 3 2 3 -2 -2 1 -1 1
0 0 0 0 -1 0 -1 0 0 0 -1 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 1 -1 -1 -1 -2 0 -1 -2 0 -1 0
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 1 1 0 0 2 -1 1 0 1 -1 -1 -1 -1 1
-1 0 0 -1 0 1 0 -1 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 0 -1 1 0 0 1 0 -1 0 -1 0 -1 0 1
1 0 1 1 -1 0 -1 1 -1 1 -1 -1 0 0 0 0 0 -1 -1 0 2 -2 -1 0 1 2 -3 0 -3 -1 -1 1 0 1 0 -3
-1 0 -1 0 0 1 1 -2 1 0 2 0 -1 0 -1 1 1 0 2 1 -4 2 3 2 -2 -1 5 -1 4 1 2 -2 -2 -2 -1 5
-1 0 0 -1 1 1 1 -1 0 0 2 0 0 0 0 0 0 0 0 0 -2 0 0 -1 1 -1 2 2 1 1 -1 0 1 -1 1 2
0 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 -1 0 0 0 0 0 -1 1 1 1 -1 -1 2 -1 2 0 2 0 -1 -1 0 1
1 -1 0 -1 1 0 0 1 -1 -1 0 0 2 1 0 0 -1 0 -1 0 2 -1 -3 -2 0 0 -4 2 -3 -2 -3 1 -1 1 0 1
0 1 1 1 0 1 0 0 0 1 0 -2 -1 0 0 1 0 -1 0 0 -1 -1 1 2 0 2 0 -1 -1 1 -1 0 0 2 0 0
-1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 -1 1 1 1 0
-1 0 0 -1 0 0 1 -1 1 -1 1 0 0 0 0 1 0 0 1 0 -2 1 1 0 -1 -1 2 0 1 0 0 -1 -1 -1 0 3
-
PROPERTIES
Modular=1
-
REFERENCES
G. Nebe, Some cyclo-quaternionic lattices. (submitted)
-
NOTES
CycloQuaternionic lattice of type Delta4
This lattice is unimodular over Z[sqrt(-2)] = commuting algebra of the automorphism group.
-
LAST_LINE
Haftungsausschluss/Disclaimer
Gabriele Nebe