The Lattice L_36,4sup2
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:18:05 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME
DIMENSION
GRAM
DIVISORS
MINIMAL_NORM
KISSING_NUMBER
HERMITE_NUMBER
GROUP_ORDER
GROUP_NAME
GROUP_GENERATORS
PROPERTIES
REFERENCES
NOTES
LAST_LINE
-
NAME
L_36,4sup2
-
DIMENSION
36
-
GRAM
36 0
6
0 6
1 -1 6
-1 0 2 6
-2 0 0 -1 6
2 1 0 -1 0 6
0 -1 1 1 1 0 6
1 2 -1 0 0 1 0 6
1 1 1 -1 0 1 2 0 6
0 0 0 0 1 1 -2 1 -1 6
0 0 0 1 2 0 0 0 0 2 6
-1 0 2 0 0 2 -1 -3 1 1 0 6
1 0 -1 -2 0 1 1 -1 1 -2 -1 1 6
0 -1 1 2 -1 -2 1 -1 0 -1 0 0 1 6
1 0 1 1 -1 0 3 0 1 -3 -1 -1 2 2 6
1 -1 1 -1 1 2 2 2 1 1 1 0 1 0 1 6
0 -2 0 0 -1 0 2 -3 0 -1 1 1 1 1 1 1 6
1 -3 0 0 0 -1 0 1 -2 0 0 -3 -2 0 0 0 -1 6
0 0 0 -1 0 0 2 0 2 -1 0 0 0 -2 1 1 1 -1 6
-1 0 -1 -1 -1 0 -3 -1 -2 1 -1 1 0 -1 -2 -1 0 -1 -3 6
0 2 -1 -2 3 1 0 2 1 0 1 0 2 -1 -1 1 -2 -1 -1 0 6
1 1 -1 -1 -2 0 -1 -2 1 -1 -1 1 0 1 0 -2 2 -1 -1 1 0 6
0 0 2 0 1 1 1 -3 1 -1 0 3 2 1 2 1 2 -2 0 0 0 0 6
2 0 -2 -2 -1 2 1 2 1 -1 0 -1 1 0 0 1 1 0 1 -1 1 1 -2 6
-2 0 0 1 0 0 -1 0 -3 1 1 1 -1 -1 -1 0 0 0 -1 2 0 -1 -1 -1 6
1 1 3 0 1 2 2 1 3 0 0 2 1 1 2 2 -1 -2 1 -2 1 -1 2 0 -2 6
-1 3 -1 1 -1 -1 -2 1 -1 -2 -1 -1 0 0 0 -2 -2 -1 -1 1 1 0 -1 0 1 -2 6
1 0 0 -2 1 3 -2 -1 0 1 0 2 1 -2 -1 -1 0 -1 -1 1 1 1 1 0 0 1 -1 6
-1 -2 -2 1 -2 -1 0 -1 -1 0 0 -1 -1 1 0 0 3 1 0 1 -2 2 -1 1 0 -3 -1 -2 6
1 0 2 0 1 -1 2 -1 2 0 1 1 2 1 1 2 1 -2 1 0 1 -1 3 -1 -2 2 -1 -2 -1 6
-1 -1 1 0 1 -1 -1 0 -2 1 -1 1 0 1 -2 1 -2 1 -1 1 1 -2 0 -1 2 -1 1 -2 -1 1 6
0 0 0 -2 0 2 -1 0 -2 1 -2 2 0 -2 -2 0 -1 0 1 1 0 -1 0 1 2 0 0 1 -2 -1 3 6
0 -2 0 -1 -1 -2 1 -2 1 -3 -3 0 2 2 1 0 1 1 1 -1 -1 1 1 0 -2 -1 0 -2 1 1 2 0 6
1 0 1 1 -2 0 0 -3 0 -1 0 2 1 2 2 -1 3 -2 -1 2 -1 3 3 0 0 0 0 0 2 2 -1 -1 0 6
0 2 -1 -1 0 2 -1 0 -1 1 1 2 1 -1 -1 0 1 -3 -1 3 2 1 1 2 2 0 1 1 0 1 0 2 -3 3 6
1 0 1 0 0 0 1 0 0 1 0 1 0 1 -1 1 1 -1 -1 0 0 1 0 1 0 1 -1 0 -1 1 1 1 0 1 1 6
-
DIVISORS
2^18
-
MINIMAL_NORM
6
-
KISSING_NUMBER
164160
-
HERMITE_NUMBER
4.24264
-
GROUP_ORDER
2^3 * 3^3 * 5 * 19
-
GROUP_NAME
SL_2(19) otimes C3
-
GROUP_GENERATORS
2
36 36
0 0 0 0 0 -1 1 1 1 -1 2 0 0 0 1 0 -1 -1 -2 0 -1 1 0 0 0 0 1 2 3 2 0 4 -1 -1 -2 0
0 0 1 0 -1 2 0 -1 -1 0 -1 0 -1 1 1 -1 0 1 3 1 0 0 0 -1 -1 -1 -2 0 -2 -2 2 -6 2 -4 7 1
-1 0 -1 0 1 -1 0 1 0 1 1 -1 1 -2 -2 0 0 -1 -3 0 0 1 1 4 3 3 3 0 2 4 -3 6 -2 5 -11 -1
0 0 -1 0 1 -1 1 1 0 1 0 0 1 -2 -2 0 0 0 -1 0 -1 1 1 2 2 3 2 0 1 1 0 1 -1 3 -5 -1
1 0 1 1 0 0 -1 -1 0 1 -1 0 0 1 2 -1 1 1 3 2 1 0 1 0 -1 -1 -1 -1 -1 -2 1 -3 0 -4 4 1
0 -1 0 -1 0 0 2 2 -1 0 0 0 1 -1 -2 0 0 -1 0 0 -2 1 1 0 -1 0 0 -1 -2 -2 2 -2 -1 2 0 -1
1 0 0 1 1 -1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 -1 1 1 0 0 1 1 0 1 -1 1 0 -1 -2 1 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 0 0 0 -1 -2 1 -1 -1 -1 0 -1 1 0 0 3 -2 0 -2 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 -1 1 0 -1 0 0 0
0 1 0 0 0 -1 -1 0 1 -1 0 0 -1 0 2 0 0 -1 -2 -1 0 -1 -1 0 0 -1 -1 2 2 2 0 2 0 -1 0 0
0 0 0 0 0 0 0 1 0 0 -1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 -2 -1 0 -1 0 0 -1 -1 0 0 0
-1 0 0 -1 0 0 1 1 -1 1 0 -1 1 -1 -3 0 0 -1 -1 0 0 0 1 2 1 1 1 -1 -1 0 -1 1 -1 5 -6 -1
1 0 1 0 0 1 0 -1 0 0 0 0 -1 2 1 -1 0 0 1 1 1 -1 0 -1 0 -1 0 0 1 0 -1 0 1 -3 2 1
0 0 -1 -1 1 -1 1 1 -1 1 1 0 1 -2 -2 -1 0 -1 -3 0 0 2 2 4 4 4 4 0 4 5 -2 5 -3 3 -12 -1
1 0 0 0 1 0 1 1 0 0 0 1 1 0 -1 -1 1 1 1 1 -1 1 1 0 0 1 1 -1 0 -1 1 -1 -1 -1 0 0
0 0 0 -1 1 -1 1 2 0 0 1 0 1 -1 -1 0 0 -1 -2 -1 -2 1 0 1 1 1 2 1 2 2 0 3 -1 2 -4 -1
0 -1 -1 -1 1 -1 2 2 -1 1 0 1 2 -1 -4 1 0 -1 -1 0 -1 1 1 2 1 1 2 -2 -2 -1 -1 1 -2 6 -7 -2
-1 0 -1 0 1 -1 0 1 0 0 1 0 1 -1 -1 1 -1 -1 -3 -1 0 1 0 2 2 1 2 0 2 4 -3 6 -2 4 -8 -1
1 0 1 1 -1 1 -1 -1 2 -1 -1 0 -1 2 3 0 2 2 4 0 -1 -1 -2 -6 -5 -3 -4 0 -4 -7 5 -7 3 -6 16 1
-1 0 0 -1 0 0 0 0 -1 0 0 0 0 0 -2 1 -2 -1 -2 -1 1 -1 0 2 2 0 1 0 1 3 -4 3 0 4 -6 0
1 1 2 1 -1 1 -1 -2 1 -1 0 0 -2 3 4 0 0 1 3 1 1 -2 -2 -4 -3 -4 -3 2 0 -2 1 -3 3 -7 11 2
0 0 0 0 -1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 1 0 -1 1 -1 1 -1 2 0
0 0 0 -1 1 0 1 1 -1 1 0 0 1 0 -3 0 0 -1 -1 1 1 0 1 3 2 1 2 -2 0 1 -3 3 -2 5 -9 -1
0 -1 0 -1 0 -1 2 2 0 -1 1 1 1 -1 -1 1 0 -1 -1 -1 -2 1 -1 -2 -2 -1 0 0 -1 -2 2 0 -1 2 1 -1
0 0 0 0 0 1 -1 0 0 0 -1 0 0 1 0 -1 0 1 2 1 0 0 1 0 1 0 0 0 0 1 0 -2 0 -2 1 1
0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 1 0 0 0 -1 1 1 1 0 1 0 0 0 0 2 -1 -1 -1 0 0
0 0 1 0 -1 2 0 -1 -1 0 -1 1 -1 1 1 0 0 1 3 1 1 -1 -1 -2 -2 -2 -2 -1 -3 -3 1 -5 2 -2 6 1
0 -1 0 0 -1 1 0 0 -1 0 -1 0 0 0 0 -1 1 0 2 1 0 0 1 0 -2 -1 -2 -2 -4 -3 3 -5 -1 -1 3 0
0 0 -1 -1 1 -2 2 2 0 0 1 1 1 -1 -3 2 -1 -1 -3 -2 -1 0 -1 0 1 1 2 1 1 1 -2 4 0 6 -5 -2
0 1 1 0 1 -1 0 0 1 0 1 0 0 1 0 1 -1 -1 -2 0 1 -1 -1 1 1 -1 1 1 3 2 -4 6 0 2 -5 0
0 1 1 0 0 0 -1 -1 1 0 1 -1 -1 1 2 0 -1 0 -1 0 1 -1 -1 -1 1 0 1 2 4 3 -3 4 2 -2 0 1
0 0 1 0 -1 1 -1 -1 1 -1 0 -1 -1 1 2 0 0 0 1 0 0 -1 -1 -3 -2 -2 -2 0 -1 -2 1 -2 2 -3 7 1
0 0 0 0 0 0 0 -1 0 1 1 -1 0 0 0 0 0 0 -1 0 1 0 0 0 1 2 2 0 2 1 -2 3 1 0 -2 0
0 0 0 -1 1 -1 2 2 0 0 1 1 1 0 -3 1 -1 -1 -2 0 0 0 0 1 1 0 2 0 1 1 -3 4 -1 5 -7 -1
0 0 1 -1 0 0 1 1 0 -1 0 1 0 1 -1 1 -1 -1 0 0 0 -1 -1 -1 -1 -3 -1 0 -1 -1 -1 0 0 2 0 0
0 0 0 1 0 -1 0 0 1 0 1 -1 0 -1 1 0 0 0 -1 0 -1 1 0 0 0 1 1 2 2 1 1 1 1 -2 1 0
36 36
-1 -1 -1 -1 1 -1 1 1 -2 1 0 1 2 -2 -4 1 -1 -2 -3 0 1 1 1 5 3 2 3 -3 0 3 -4 5 -4 8 -14 -2
2 1 1 1 -2 1 -1 -3 1 -1 -1 0 -3 3 4 -1 1 2 4 1 1 -2 -1 -5 -3 -2 -3 2 0 -3 3 -6 4 -10 15 2
-1 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 -1 -1 -1 1 -1 -1 1 0 -2 -1 -1 -2 0 -1 1 -1 4 -3 -1
0 0 0 0 0 0 0 0 1 -1 0 0 -1 0 1 1 1 -1 -1 -1 0 -1 -2 -2 -2 -2 -2 0 -2 -2 1 0 1 1 3 -1
1 1 1 1 0 0 -1 -1 2 -1 0 0 -1 2 3 -1 0 2 2 0 0 -1 -1 -3 -1 -1 -1 3 3 0 1 -1 2 -6 8 2
-1 0 -1 -1 1 -2 1 1 -1 1 1 0 1 -2 -3 1 -1 -2 -4 -1 0 1 0 4 3 3 3 0 2 4 -3 6 -2 7 -12 -2
0 0 1 0 0 0 -1 0 1 -1 0 0 0 0 1 0 1 -1 0 0 1 -1 -1 -1 -2 -2 -2 -1 -1 -2 1 0 -1 0 1 0
0 0 0 0 0 0 0 -1 -2 1 -1 0 1 -1 -1 -1 0 0 1 2 1 2 3 4 2 2 1 -2 0 1 0 -1 -3 0 -6 0
-1 0 0 0 0 0 -2 0 0 0 0 -1 0 0 0 -1 0 -1 -2 0 2 0 1 3 3 1 1 0 3 5 -3 5 -2 1 -8 0
0 0 -1 1 0 0 -1 -2 0 1 -1 -1 -1 0 1 -1 0 1 0 1 1 1 2 3 3 3 2 1 3 4 -1 1 -1 -3 -3 1
2 1 1 1 0 0 -1 -1 3 -2 1 1 -3 3 5 0 0 1 1 0 1 -3 -3 -6 -3 -3 -2 3 3 -2 0 0 5 -7 12 2
0 1 0 1 -1 0 -2 -2 2 -1 0 -1 -3 2 3 1 0 0 -1 -2 1 -3 -3 -3 -1 -2 -2 3 1 1 -1 1 4 -3 7 1
1 0 0 1 -1 0 -1 -1 1 -1 0 0 -1 1 2 0 0 1 2 0 0 -1 -1 -3 -2 -1 -2 1 -1 -2 2 -3 2 -4 8 1
0 1 0 1 0 0 -1 -1 1 -1 0 0 -1 1 1 1 0 0 0 0 1 -2 -1 -1 -1 -2 -2 0 -1 -1 -1 1 1 0 2 0
1 1 1 1 -1 -1 0 0 2 -2 1 1 -1 1 3 1 1 0 1 0 0 -2 -3 -5 -5 -4 -4 1 -2 -5 3 -2 2 -3 10 0
0 0 0 0 1 -1 0 0 0 1 1 -1 1 -1 -1 -1 -1 -1 -2 1 1 1 2 4 4 3 3 0 4 4 -3 5 -2 2 -10 0
0 0 0 -1 1 -1 1 2 1 -1 2 0 0 -1 -1 1 -1 -2 -4 -2 -1 -1 -2 -1 0 0 1 1 2 1 -2 5 1 4 -3 -1
-1 0 0 0 1 0 1 1 -1 1 0 1 2 -1 -2 1 0 0 0 1 0 1 0 2 0 0 1 -2 -2 -1 -1 1 -2 5 -6 -1
1 0 1 0 0 0 -1 0 1 -1 0 0 0 1 2 -1 1 0 1 1 0 0 0 -1 -1 -1 -1 0 1 -1 2 -1 -1 -4 3 1
-1 -1 -1 -1 0 0 2 1 -2 2 1 -1 1 -2 -3 0 -2 -1 -2 -1 -1 2 2 3 3 3 3 0 1 3 -2 2 0 4 -7 -1
1 0 1 1 -1 1 -1 -2 0 0 -1 0 -1 2 2 -1 0 2 4 1 1 -1 0 -3 -2 -1 -2 0 -1 -3 1 -5 3 -6 10 2
-1 0 0 -1 0 0 1 1 -1 0 1 0 0 0 -2 1 -1 -1 -2 -1 0 -1 -1 0 0 0 1 0 0 1 -3 3 1 4 -3 -1
1 1 1 1 -1 0 -1 -1 3 -2 1 0 -3 2 4 1 0 0 0 -2 0 -4 -5 -7 -4 -4 -4 3 0 -3 1 -1 6 -4 14 1
-1 0 -1 -1 2 -2 1 2 -2 1 1 0 3 -3 -5 1 -1 -2 -4 0 0 2 2 6 4 4 4 -2 2 4 -4 7 -4 9 -17 -2
1 0 0 0 0 0 1 0 0 0 0 1 -1 1 0 1 0 0 1 0 0 -1 -1 -2 -2 -2 -1 0 -2 -3 0 -2 2 0 4 0
0 1 1 1 -1 0 -2 -2 1 -1 -1 0 -2 2 3 0 0 0 1 0 2 -2 -1 -1 -1 -3 -3 1 0 0 0 -1 1 -4 5 1
1 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 1 1 2 0 -1 0 0 -3 -2 0 -1 0 -2 -4 3 -4 2 -2 7 0
-1 0 -1 -1 0 -1 1 1 -1 0 0 1 0 -1 -2 1 -1 0 -2 -2 -1 0 -1 1 1 1 1 1 0 2 -1 1 0 4 -3 -1
-1 -1 -1 -1 2 -1 2 3 -1 1 2 -1 3 -3 -4 0 -1 -2 -4 0 -2 3 2 4 3 4 4 -1 2 3 -2 6 -3 7 -13 -2
1 0 1 1 -1 1 -2 -2 2 -1 0 -1 -2 2 4 -1 0 0 1 0 2 -2 -1 -3 -1 -2 -2 1 2 0 0 0 2 -6 7 2
0 0 0 1 0 1 -1 -2 0 1 -1 -1 0 1 0 0 0 1 2 1 1 0 1 1 1 0 0 -1 -1 0 -1 -1 0 -1 0 1
0 0 0 0 0 0 0 -1 -1 1 -1 0 0 0 -1 1 0 0 1 0 0 0 0 1 0 0 0 -1 -2 -1 0 -2 0 1 0 0
-1 0 0 0 0 1 -1 0 0 0 0 -1 1 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 -1 -1 1 -1 1 -1 2 -3 0
0 0 0 0 0 -1 1 1 1 -1 2 0 -1 0 0 2 -1 -2 -3 -2 0 -2 -3 -3 -2 -2 -1 1 0 -1 -2 4 3 3 2 -1
1 0 0 0 0 -1 1 0 0 0 1 0 -1 0 0 1 -1 -1 -1 -1 0 -1 -1 -2 -1 0 0 1 1 -1 -1 1 3 0 3 0
-1 0 0 0 0 0 -1 -1 0 0 0 -1 -1 0 -1 1 -1 -1 -2 -1 2 -1 0 2 2 0 1 0 1 3 -4 4 0 3 -5 0
-
PROPERTIES
Modular=1
-
REFERENCES
G. Nebe, Some cyclo-quaternionic lattices. (submitted)
-
NOTES
CycloQuaternionic lattice of type Delta4
-
LAST_LINE
Haftungsausschluss/Disclaimer
Gabriele Nebe