The Lattice dim16mod7
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:27:33 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME
DIMENSION
DIVISORS
MINIMAL_NORM
KISSING_NUMBER
GROUP_ORDER
GROUP_NAME
GROUP_GENERATORS
GRAM
PROPERTIES
REMARKS
LAST_LINE
-
NAME
dim16mod7
-
DIMENSION
16
-
DIVISORS
1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7
-
MINIMAL_NORM
6
-
KISSING_NUMBER
480
-
GROUP_ORDER
2^7 * 3^2 * 5^2
-
GROUP_NAME
SL2(5) o SL2(5) : 2
-
GROUP_GENERATORS
3
16 16
0 0 0 0 0 0 0 0 1 0 0 0 -1 0 1 0
0 0 0 0 0 0 0 0 0 -1 -1 0 0 1 -1 0
0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 -1
0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 -1 -1 0 1
-1 -1 1 1 -1 1 1 -1 0 0 0 0 0 0 0 0
-1 -1 1 1 -1 1 0 -1 0 0 0 0 0 0 0 0
1 0 -1 -1 1 -1 0 1 0 0 0 0 0 0 0 0
1 1 0 -1 0 0 -1 1 0 0 0 0 0 0 0 0
-1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
-2 -1 1 1 -1 1 1 -1 0 0 0 0 0 0 0 0
16 16
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
1 1 -1 0 0 0 -1 1 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
1 0 -1 0 1 0 0 1 0 0 0 0 0 0 0 0
2 1 0 -1 0 0 -1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 -1 -1 -2 0 0 -1 0
0 0 0 0 0 0 0 0 -1 0 0 -1 1 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 -1
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
16 16
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 -1 0 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 -1 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1
0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0
-
GRAM
16 16
6 -2 1 3 -2 0 3 -1 2 0 0 0 0 0 0 0
-2 6 3 1 2 -1 1 0 0 2 0 0 0 0 0 0
1 3 6 3 0 -3 3 2 0 0 2 0 0 0 0 0
3 1 3 6 -2 -3 3 2 0 0 0 2 0 0 0 0
-2 2 0 -2 6 3 -3 -3 0 0 0 0 2 0 0 0
0 -1 -3 -3 3 6 -3 -3 0 0 0 0 0 2 0 0
3 1 3 3 -3 -3 6 2 0 0 0 0 0 0 2 0
-1 0 2 2 -3 -3 2 6 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 12 6 -4 -6 3 -5 -5 6
0 2 0 0 0 0 0 0 6 6 -3 -3 0 -2 -3 3
0 0 2 0 0 0 0 0 -4 -3 6 1 -3 3 0 -3
0 0 0 2 0 0 0 0 -6 -3 1 6 -1 3 2 -3
0 0 0 0 2 0 0 0 3 0 -3 -1 6 -3 1 3
0 0 0 0 0 2 0 0 -5 -2 3 3 -3 6 2 -2
0 0 0 0 0 0 2 0 -5 -3 0 2 1 2 6 -2
0 0 0 0 0 0 0 2 6 3 -3 -3 3 -2 -2 6
-
PROPERTIES
INTEGRAL =1
MODULAR = 7
-
REMARKS
Found by Gabriele Nebe using the convenient construction described in Bachoc/Nebe (Crelle 1998)
If F is the GramMatrix of the extremal 11-modular lattice with
automorphism group SL2(5)oSL2(5) of dimension 8
then the GramMatrix of this lattice is the block matrix
F 2I8
2I8 11F^-1
Its automorphism group is diag(g,g^{-tr}) (the obvious subgroup) with g in Aut(F)
extended by the isometry between F and 11 F^-1.
-
LAST_LINE
Haftungsausschluss/Disclaimer
Gabriele Nebe