The Lattice 2.Alt7x2.Alt7.2^2
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:14:29 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME
DIMENSION
GRAM (floating point or integer Gram matrix)
DIVISORS (elementary divisors)
MINIMAL_NORM
KISSING_NUMBER
GROUP_ORDER
GROUP_GENERATORS
PROPERTIES
REFERENCES
NOTES
URL (links to other sites for this lattice)
LAST_LINE
-
NAME
2.Alt7x2.Alt7.2^2
-
DIMENSION
32
-
GRAM (floating point or integer Gram matrix)
32 0
8
4 8
2 0 8
4 4 1 8
4 4 1 4 8
2 2 2 1 1 8
4 4 2 4 4 0 8
2 2 1 0 1 2 1 8
1 1 4 2 2 1 1 1 8
1 2 2 2 0 2 2 2 2 8
2 0 0 1 1 4 2 2 1 0 8
2 0 1 2 2 2 0 1 -1 2 2 8
1 1 4 2 0 1 1 1 4 1 1 0 8
2 1 2 2 0 1 0 2 2 2 0 2 4 8
2 1 2 2 0 2 2 2 1 0 1 0 2 4 8
0 2 2 1 1 4 2 2 1 2 4 2 1 -1 0 8
1 2 2 1 1 2 1 2 0 1 1 2 1 2 1 2 8
1 1 4 0 2 1 1 1 4 1 1 0 4 2 0 1 0 8
0 1 0 0 2 1 2 1 2 1 2 0 1 2 0 1 4 2 8
4 4 1 4 4 1 4 1 0 0 1 1 2 2 0 1 1 2 2 8
1 1 1 2 0 4 1 0 2 2 4 2 0 0 1 4 0 2 1 2 8
2 0 2 2 1 2 1 4 0 0 2 2 2 2 4 0 1 0 0 1 0 8
2 0 2 0 1 1 2 2 0 2 2 2 0 1 0 0 2 2 2 2 2 2 8
0 2 2 2 1 2 1 4 2 2 0 0 0 0 2 2 2 0 1 1 2 4 2 8
2 1 0 2 2 4 0 2 0 0 2 2 0 2 4 0 1 0 0 0 2 4 1 2 8
2 1 2 2 0 0 2 0 2 2 1 1 1 2 2 2 4 0 4 0 2 1 1 2 0 8
2 2 1 4 2 1 2 0 2 2 0 0 2 4 4 -1 1 0 2 2 0 2 0 2 2 2 8
2 2 1 4 2 2 2 0 0 4 0 2 0 2 2 1 0 0 1 2 2 2 2 2 2 2 4 8
0 1 2 0 0 2 -1 1 2 1 0 0 4 4 2 1 2 2 2 0 0 0 0 0 2 2 2 2 8
0 2 1 2 1 2 0 2 2 2 0 0 1 2 2 1 0 0 1 2 2 2 2 4 1 0 4 4 2 8
2 1 2 1 0 2 1 0 0 -1 0 2 2 2 2 0 2 2 2 2 2 2 2 0 2 2 0 1 2 0 8
1 1 0 1 2 1 0 4 2 0 1 1 2 2 2 1 1 2 2 2 1 4 2 4 2 1 2 0 0 2 1 8
-
DIVISORS (elementary divisors)
1^16 7^16
-
MINIMAL_NORM
8
-
KISSING_NUMBER
5040
-
GROUP_ORDER
2^9 * 3^4 * 5^2 * 7^2
-
GROUP_GENERATORS
4
32
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1
-4 0 1 0 1 3 2 3 -1 -2 1 0 1 1 -2 -3 -1 0 -3 0 -1 -3 0 -1 1 5 0 1 -2 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
-3 0 -1 -1 0 2 1 2 1 -1 1 1 1 -1 0 -2 0 1 -3 2 -2 -2 0 -1 1 4 0 1 -2 1 0 0
-1 0 0 0 0 1 0 0 1 0 0 0 -1 0 0 0 0 0 -1 1 -1 0 0 -1 0 1 0 0 0 0 0 1
-3 0 0 -2 2 2 2 2 -1 -1 2 0 2 1 -2 -3 0 0 -4 0 -1 -3 -1 0 1 4 0 2 -2 1 1 1
-2 0 1 1 1 2 1 2 -2 -1 0 0 1 0 -1 -2 -1 0 -1 -1 0 -2 0 -1 0 3 0 0 -1 1 0 1
1 0 0 1 0 -1 -1 0 0 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 0 0 -1 0 0 0 0 0 0
-3 0 -1 -1 0 3 1 2 1 -1 0 1 1 -1 0 -2 0 1 -3 2 -2 -2 0 -1 1 4 0 1 -2 1 0 0
0 0 1 0 0 0 1 0 -1 -1 1 0 1 1 -1 -1 0 0 0 -1 0 -2 -1 1 1 0 -1 1 -1 1 0 1
-4 0 1 0 1 3 1 3 -1 -1 2 0 1 0 -1 -3 -1 0 -3 1 -2 -4 0 -1 1 5 0 1 -2 1 1 1
-4 -1 1 -1 2 3 3 3 -2 -1 3 0 2 1 -2 -5 0 0 -4 0 -1 -5 -2 0 1 5 -1 2 -2 2 1 2
-5 0 1 -2 2 3 3 3 -1 -1 3 0 1 1 -2 -5 0 0 -5 1 -1 -4 -2 -1 1 6 -1 2 -2 2 1 2
-3 0 -1 -1 0 3 2 2 1 -2 0 1 1 0 -1 -2 0 1 -3 1 -2 -2 0 -1 1 4 0 1 -2 1 0 0
-1 -2 -3 -2 1 2 2 1 1 -1 -1 0 2 1 -1 0 1 1 -3 1 -1 -1 0 0 1 3 0 1 -2 1 0 -1
-4 0 1 0 2 4 2 3 -2 -2 1 0 2 1 -2 -4 -1 0 -3 -1 0 -3 0 -1 0 5 0 1 -2 1 0 1
0 -2 -3 -1 1 2 1 0 1 0 -1 0 1 0 0 0 1 1 -2 1 -1 0 0 0 0 2 0 0 -1 1 0 -1
-1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1 0 0 -1 1 -1 -1 0 0 0 1 0 0 0 0 0 1
-2 0 -1 0 0 3 2 2 0 -2 -1 1 1 0 -1 -2 0 1 -2 0 0 -1 0 -1 0 3 0 0 -1 1 -1 0
-3 0 0 -2 1 2 2 2 0 -1 2 0 1 1 -2 -3 0 0 -4 1 -1 -3 -1 0 1 4 0 2 -2 1 1 1
0 -1 -3 0 -1 2 1 0 2 -1 -2 1 0 0 0 1 0 1 -1 1 -1 1 1 0 0 1 0 0 0 0 -1 -1
-1 0 -1 -1 1 1 1 1 0 -1 0 0 1 1 -1 -1 0 0 -2 0 0 -1 0 0 0 2 0 1 -1 0 0 0
-4 0 0 -2 1 3 3 3 0 -2 1 1 2 0 -2 -4 0 0 -4 1 0 -3 -1 -1 1 5 0 2 -2 1 0 1
0 -2 -3 -1 1 2 2 1 1 -1 -2 0 1 1 -1 0 1 1 -2 0 0 0 0 0 0 2 0 0 -1 1 0 -1
1 0 1 0 1 -2 -2 -1 -1 2 2 -1 0 0 1 0 0 -1 1 0 0 -1 -1 1 0 -1 -1 0 0 0 1 1
0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-4 -1 -1 -1 2 3 2 3 0 -1 1 0 2 0 -1 -3 0 0 -4 1 -1 -3 0 -1 1 5 0 1 -2 1 1 0
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 -1 -1 -1 1 2 2 1 0 -1 0 0 1 1 -1 -1 0 0 -2 0 0 -1 0 0 0 2 0 0 -1 1 0 0
-1 0 0 -1 1 1 1 0 -1 0 2 0 1 1 -1 -2 0 0 -2 0 -1 -2 -1 1 0 2 -1 1 -1 1 1 1
32
-6 0 0 -2 1 5 5 4 0 -3 1 1 1 1 -3 -5 0 1 -6 1 -1 -3 -1 -2 1 7 0 2 -2 2 0 1
0 0 0 -1 0 0 2 0 0 -1 0 0 0 1 -1 -1 1 0 -1 -1 1 0 -1 0 0 0 -1 1 0 1 0 1
0 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0 1 0 0 0 1 -1 1 0 -1 0 0 0 0 0 0 0 0
0 -1 -2 -1 0 1 2 0 1 -1 -1 0 0 1 -1 0 1 1 -2 0 0 1 0 0 0 1 0 0 0 1 0 -1
1 -1 -2 -1 0 0 1 0 1 0 -1 0 0 0 0 1 1 1 -1 0 0 1 0 0 0 0 0 0 0 1 0 -1
-3 -1 -2 -2 0 3 3 2 2 -2 0 1 1 0 -1 -2 1 1 -4 2 -2 -2 0 -1 1 4 0 2 -2 1 0 0
-1 0 1 0 0 1 2 1 -1 -1 1 0 0 1 -1 -2 0 0 -1 -1 0 -1 -1 0 0 1 -1 1 0 1 0 1
-3 0 1 -1 1 2 2 3 -1 -2 1 0 1 1 -2 -3 0 0 -3 0 0 -3 -1 -1 1 4 0 2 -2 1 0 1
1 -1 -1 -1 0 0 0 0 1 0 -1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 -1
0 0 1 0 0 0 1 0 -1 -1 1 0 0 1 -1 -1 0 0 0 -1 0 -1 -1 0 0 0 -1 1 0 1 0 1
-4 -1 -1 -1 0 4 3 3 1 -2 0 1 1 0 -1 -3 0 1 -4 2 -2 -3 0 -1 1 5 0 2 -2 1 0 0
-1 -1 -1 0 0 1 1 0 1 0 0 0 -1 0 0 0 1 1 -2 1 -1 0 0 -1 0 1 0 0 0 1 0 0
0 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 1 0 1 0 -1 0 0 0 0 0 0 0 0
-2 0 1 -1 0 1 2 1 0 -1 1 0 0 1 -2 -2 0 0 -2 0 0 -1 -1 -1 1 2 0 1 -1 1 0 1
-2 0 0 -1 0 1 1 1 1 -1 1 0 0 1 -1 -1 0 0 -2 1 -1 -1 0 0 1 2 0 1 -1 0 0 0
1 -1 -1 0 -1 0 1 0 1 -1 -1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0
2 0 -1 0 -3 -1 0 -2 2 0 -1 1 -2 -1 1 2 1 1 1 1 -1 2 0 0 0 -2 0 0 1 0 -1 0
1 0 0 0 -1 0 0 0 1 0 -1 0 -1 0 0 1 0 0 1 0 0 1 0 -1 0 -1 0 0 0 0 0 0
2 0 0 0 -2 -1 0 -1 1 0 -1 1 -1 -1 1 1 0 0 2 0 0 1 0 0 0 -2 0 0 1 0 -1 0
-1 0 0 -1 0 1 3 1 0 -1 0 0 0 1 -2 -2 1 0 -2 -1 1 0 -1 -1 0 1 0 1 0 1 0 1
0 -1 -1 -1 0 1 2 0 1 -1 -1 0 0 1 -1 0 1 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0
-3 0 0 -1 1 2 1 2 0 -1 1 0 1 1 -1 -2 0 0 -3 1 -1 -2 0 -1 1 4 0 1 -2 1 0 0
-2 0 1 -1 1 1 1 1 -1 0 2 0 0 1 -1 -2 0 0 -2 0 -1 -2 -1 0 0 2 0 1 -1 1 1 1
2 -1 -2 -1 0 -1 0 -1 1 0 -1 0 0 1 0 2 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 0 -1
-2 -1 -2 -2 1 2 2 1 1 -1 0 0 1 1 -1 -1 1 1 -3 1 -1 -1 0 0 1 3 0 1 -2 1 0 -1
1 0 0 0 -2 0 1 -1 1 -1 -1 1 -1 0 0 1 0 0 1 0 0 1 0 0 0 -1 0 0 1 0 -1 0
1 0 -1 -1 0 -1 0 -1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 -1 0 0 0 0 0 -1
0 0 0 0 0 0 1 0 0 -1 0 0 0 1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 -1 -1 0 -1 1 0 0 0 -1 0 0 1 0 0 1 0 0 1 0 0 0 -1 0 0 0 0 0 0
1 0 0 -1 1 -2 -1 -1 0 1 1 -1 0 1 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 0 1 0
-1 1 2 0 0 0 0 0 0 0 1 0 -1 0 0 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1
0 -1 -2 -2 1 1 1 1 1 -1 -1 0 1 1 -1 0 1 0 -2 0 1 0 0 0 0 1 1 1 -1 0 0 -1
32
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 -2 -2 -2 -1 2 1 -1 -1 0 1 1 0 0 2 0 0 1 0 1 0 -2 -1 -1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 1 2 0 2 0 -1 1 -2 0 1 -1 1 1 0 -1 -1 -1 0 -1 1 -1 0 0 0 1 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 1 0 -3 -2 -2 -1 2 0 -1 0 0 1 2 0 -1 3 -1 1 1 0 1 0 -3 -1 -1 1 0 0 0
1 0 0 1 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 1 -1 2 1 0 0 -1 -1 0 -1 1 0 -1 0
1 0 1 0 1 -1 -1 0 -1 0 0 -1 1 1 0 1 0 -1 1 -1 1 0 0 0 0 -1 0 0 -1 0 0 0
-1 -1 -1 0 1 2 2 1 -1 -1 0 0 1 1 -1 -1 0 1 -2 -1 0 -1 0 0 0 2 0 0 -1 1 0 0
2 0 0 1 0 -2 -2 -2 0 2 0 -1 -1 0 1 2 0 0 2 0 0 2 0 0 0 -2 -1 -1 1 0 0 0
1 0 0 1 0 -1 -1 -1 0 1 0 0 -1 0 1 1 0 0 1 0 0 1 0 0 0 -1 -1 -1 1 0 0 0
0 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 -1 0 -1
1 0 0 0 1 -1 -1 0 -1 0 0 -1 1 1 0 1 0 0 1 -1 1 0 0 1 0 -1 0 0 -1 0 0 -1
-3 1 3 1 0 2 1 2 -2 -1 2 0 0 0 -1 -3 -1 0 -1 0 -1 -3 -1 -1 1 3 -1 1 -1 1 0 2
2 1 2 1 0 -3 -2 -2 -1 2 1 -1 -1 0 1 1 0 -1 3 -1 1 1 0 0 0 -3 -1 -1 1 0 0 1
-3 1 3 0 1 1 1 2 -2 -1 2 0 1 0 -1 -3 -1 -1 -1 0 0 -3 -1 -1 1 3 -1 1 -1 1 0 2
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 2 -1 -1 0 -2 0 0 -1 2 1 0 0 0 -1 1 -2 2 -1 0 1 0 -1 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 0 1 1 -1 -1 0 -1 -1 0 -1 0 -1 0 0 1 0 0 2 -1 1 1 0 0 0 -2 0 -1 1 0 -1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 1 0 0 1 1 1 -1 -1 1 0 1 0 -1 -2 0 0 -1 0 0 -2 -1 0 1 2 -1 1 -1 1 0 1
1 0 -1 1 0 -1 -2 -1 1 1 -1 0 -1 -1 2 2 0 0 1 1 0 2 1 0 -1 -1 0 -1 1 -1 0 -1
1 0 -1 1 0 0 0 0 0 -1 -2 0 0 0 0 1 0 0 1 -1 2 2 1 0 -1 -1 1 -1 1 -1 -1 -1
1 0 0 1 0 -1 -1 -1 0 1 0 -1 -1 0 1 1 0 0 1 0 0 1 0 0 0 -1 -1 -1 1 0 0 0
2 0 -1 1 0 -1 -1 -1 0 0 -2 0 0 0 1 2 0 0 2 -1 1 2 1 1 -1 -2 0 -1 1 -1 -1 -1
-2 1 3 0 2 0 0 1 -3 0 3 -1 1 1 -1 -3 -1 -1 -1 -1 0 -3 -1 0 1 2 -1 1 -1 1 1 2
1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1 0 0 1 -1 1 1 0 0 0 -1 0 0 0 0 0 0
32
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 1 3 -1 2 0 1 0 -3 0 3 -1 1 2 -2 -3 0 -1 -1 -2 1 -2 -2 1 0 1 -1 1 -1 1 1 2
0 0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 0 -3 -2 -2 -1 1 0 -1 0 0 1 2 0 -1 3 -2 2 2 0 1 -1 -4 0 -1 1 -1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 1 0 0 1 1 1 0 -1 1 0 0 0 -1 -2 0 0 -1 0 0 -1 -1 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
-1 0 1 0 0 1 1 1 -1 -1 1 0 1 0 -1 -2 0 0 -1 0 0 -2 -1 0 1 2 -1 1 -1 1 0 1
-1 0 1 0 0 1 2 1 -1 -1 1 0 1 1 -2 -2 0 0 -1 -1 0 -2 -1 0 1 2 -1 1 -1 1 0 1
-1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2 1 2 0 0 1 1 1 -1 -1 2 0 0 1 -1 -2 -1 0 -1 0 -1 -2 -1 0 1 2 -1 1 -1 1 0 1
0 0 0 -1 1 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
-2 0 1 -1 1 1 2 1 -1 -1 1 0 1 1 -1 -2 0 0 -2 0 0 -2 -1 0 1 2 -1 1 -1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 3 0 2 0 1 1 -3 0 3 -1 1 2 -2 -3 0 -1 -1 -2 1 -3 -2 1 0 1 -1 1 -1 1 1 2
-1 -1 0 -1 2 1 1 1 -1 0 1 -1 1 1 -1 -1 0 0 -2 0 0 -1 -1 0 0 2 0 0 -1 1 1 0
-2 1 3 0 2 0 1 1 -3 0 3 -1 1 2 -2 -3 0 -1 -1 -2 1 -2 -2 0 0 1 -1 1 -1 1 1 2
-1 0 1 0 1 1 1 1 -1 -1 1 0 1 1 -1 -2 0 0 -1 -1 0 -2 -1 0 0 2 -1 1 -1 1 0 1
-1 0 1 0 0 1 2 1 -1 -1 1 0 1 1 -1 -2 0 0 -1 -1 0 -2 -1 0 1 1 -1 1 -1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
-3 0 -1 -1 0 3 2 2 1 -2 0 1 1 0 -1 -2 0 1 -3 1 -1 -2 0 -1 1 4 0 1 -2 1 0 0
-2 0 0 0 2 1 0 1 -1 0 1 -1 1 1 -1 -1 0 0 -2 0 0 -1 0 0 0 2 0 0 -1 0 1 0
-5 -1 -1 -2 1 5 5 4 0 -3 1 1 2 1 -3 -5 0 1 -6 1 -1 -4 -1 -1 1 7 0 2 -2 2 0 1
-1 0 2 -1 3 0 1 1 -3 0 2 -1 2 2 -2 -3 0 -1 -1 -2 2 -2 -2 1 0 1 -1 1 -1 1 1 1
-
PROPERTIES
INTEGRAL = 1
MODULAR = 7
-
REFERENCES
G. Nebe, Finite quaternionic matrix groups,
Representation Theory 2, 106-223 (April 1998)
-
NOTES
-
URL (links to other sites for this lattice)
All the quaternionic matrix groups
-
LAST_LINE
Haftungsausschluss/Disclaimer
Gabriele Nebe