The Lattice SL2(19):2,2mod
An entry from the Catalogue of Lattices, which is a joint project of
Gabriele Nebe, RWTH Aachen University
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane
(njasloane@gmail.com)
Last modified Fri Jul 18 13:14:34 CEST 2014
INDEX FILE |
ABBREVIATIONS
Contents of this file
NAME (required)
DIMENSION (required)
GRAM (floating point or integer Gram matrix)
DIVISORS (elementary divisors)
MINIMAL_NORM
KISSING_NUMBER
GROUP_ORDER
GROUP_GENERATORS
PROPERTIES
URL
LAST_LINE (required)
-
NAME (required)
SL2(19):2,2mod
-
DIMENSION (required)
30
-
GRAM (floating point or integer Gram matrix)
36 0
6
2 6
0 1 6
-3 0 1 6
1 2 0 1 6
1 2 0 0 2 6
0 -1 1 1 -1 -1 6
1 1 1 -1 -1 -1 0 6
1 0 1 1 1 0 0 3 6
-1 -1 2 1 0 -2 1 2 3 6
0 -1 0 0 -3 -3 0 2 1 1 6
0 1 3 0 -1 0 0 1 1 1 1 6
0 2 -1 -1 0 2 -2 0 -1 -2 0 -1 6
0 0 0 1 -1 1 1 0 0 -2 0 0 1 6
1 1 0 0 0 1 0 -1 -1 -2 0 0 0 2 6
-1 1 -2 0 1 2 -2 -1 -2 -2 -1 -1 3 1 1 6
-1 0 1 -1 -2 -2 0 0 -2 -1 0 1 0 1 2 0 6
1 1 0 0 -1 0 2 -2 -2 -1 0 -1 0 1 1 0 0 6
3 2 0 0 3 2 0 0 1 -1 -1 -1 1 0 0 0 -2 1 6
1 -1 -2 -1 0 0 0 -2 -2 -2 -1 -2 -1 -1 1 1 0 2 0 6
-2 0 0 1 -1 1 0 1 2 2 1 0 0 1 -1 0 -1 0 -2 -2 6
0 1 0 -1 1 2 0 -2 -3 -2 -1 1 2 0 0 2 1 0 0 1 -1 6
1 -1 -2 -1 0 0 0 -1 -1 -1 0 -1 0 1 -2 -1 -2 1 0 1 0 1 6
1 1 1 -1 0 1 2 1 1 0 0 2 0 2 1 -1 0 2 1 -1 1 1 0 6
1 -2 -1 -2 -2 0 0 0 -1 -2 1 1 0 1 1 0 1 0 0 2 -1 1 1 1 6
1 2 -1 -1 0 0 2 0 -1 -2 0 0 2 0 0 1 1 1 1 0 -1 2 -1 1 -1 6
0 3 0 -1 0 2 -2 1 0 -1 0 0 2 0 2 2 1 0 -1 -1 3 0 -2 0 -1 1 6
2 3 1 0 2 2 1 0 1 0 -3 -1 1 2 0 0 0 2 2 -1 1 0 0 2 -2 1 1 6
-1 -2 -1 1 -1 -2 2 -1 -1 0 0 -1 -1 -1 0 0 1 0 0 1 -2 -1 -2 -2 0 2 -2 -2 6
0 -1 1 -1 -1 1 -2 1 2 1 0 1 1 1 -2 -1 -1 -2 -1 -2 2 -1 1 0 1 -3 0 1 -3 6
1 1 1 0 0 1 -1 2 2 1 0 -1 1 2 1 1 0 0 0 -1 2 -2 -1 0 0 -2 2 3 -3 3 6
-1 1 0 1 -1 1 -1 1 1 -1 2 2 0 1 2 1 0 0 0 -1 2 -1 -1 1 1 0 3 -2 -1 -1 0 6
-3 -1 -1 2 -2 -2 1 0 -1 0 1 -1 0 1 -1 1 1 1 -2 0 1 -1 0 -1 -2 2 0 -1 2 -2 -1 1 6
-1 -2 0 -1 -3 -2 -1 -1 -2 0 1 0 -1 -1 1 0 3 0 -3 1 0 -1 -1 -3 2 -2 1 -2 1 1 1 0 0 6
3 1 0 -2 2 1 0 1 1 1 -1 0 0 -1 -2 -1 -2 0 2 1 -1 2 2 2 0 0 -2 2 -2 1 0 -3 -3 -3 6
-2 -1 2 1 -3 -2 0 3 2 3 2 2 -2 0 -1 -2 1 -1 -3 -2 3 -3 -1 0 0 -2 1 -1 -1 2 2 2 2 2 -2 6
-
DIVISORS (elementary divisors)
1^18 2^18
-
MINIMAL_NORM
6
-
KISSING_NUMBER
-
GROUP_ORDER
2^4 * 3^2 * 5 * 19
-
GROUP_GENERATORS
2
36
0 1 1 0 0 0 0 0 1 -1 -1 0 1 1 0 0 -1 -1 0 0 1 -1 0 1 0 0 -1 -1 -1 -2 -1 -1 1 3 1 0
0 0 0 0 0 0 1 -1 1 -1 1 0 0 0 0 2 1 0 1 0 -1 -1 1 0 0 -1 2 0 0 0 -2 -2 -1 -1 0 3
0 0 0 -1 0 0 1 0 0 0 0 1 0 -1 1 0 0 0 0 -1 1 -1 -1 -2 2 -2 0 1 -1 0 -1 0 3 -1 1 -2
1 -1 -1 -1 1 0 0 1 -2 1 1 1 1 0 0 -1 0 0 -1 1 1 0 -2 -2 0 -1 -2 3 -1 0 -1 2 0 -1 -1 -1
-1 1 1 0 0 1 0 -1 1 1 1 -1 0 1 0 1 0 -1 0 0 -1 -2 1 1 1 1 1 0 -1 -1 -2 -1 0 2 1 0
0 0 0 -1 0 -1 1 0 0 -1 0 0 1 0 0 0 -1 -1 0 0 0 0 -1 0 0 -2 0 2 0 -1 -1 1 1 1 1 0
0 -1 0 0 0 0 0 0 -1 0 0 2 1 0 0 -1 -1 -1 0 0 1 -1 -1 -1 1 -1 0 2 -1 -2 0 0 2 1 1 -2
0 1 -1 0 -2 -1 0 -2 1 -1 -2 1 -1 1 -2 0 1 1 2 0 0 1 1 1 -2 0 2 -6 1 -1 4 -3 -3 -3 -2 2
1 1 -1 -1 0 -1 1 -1 0 -1 -1 1 1 0 -1 -1 0 0 0 0 1 1 -1 0 -1 -2 -1 -2 0 -1 2 0 0 -1 -1 0
0 1 0 0 0 1 0 -1 0 1 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 0 1 1 0 -2 -1 0 1 -1 0 -1 -1 -1
1 0 -1 0 0 0 0 0 0 -1 -1 1 0 0 -1 -1 1 1 0 0 1 1 0 0 -2 0 -1 -3 1 0 3 0 -1 -1 -1 0
1 -1 -1 -1 0 -1 2 0 0 -1 0 1 0 -1 1 0 0 1 0 -1 0 1 -2 -3 1 -3 1 1 -1 1 -1 0 2 -3 0 0
-1 1 0 0 -1 0 0 -1 2 -1 0 -1 -1 0 0 2 1 0 2 0 -1 1 3 2 -2 1 1 -2 2 0 1 -2 -3 0 -1 4
0 -1 -1 -1 0 -1 1 0 0 -1 0 1 1 0 0 0 0 1 0 0 0 1 -1 -2 -1 -2 0 1 0 -1 0 0 -1 -2 0 2
-1 -1 -1 -1 1 0 2 0 0 -1 2 1 1 0 0 0 0 0 0 1 -2 1 0 -1 -1 -3 2 3 2 1 -1 1 0 -1 1 2
-1 0 0 0 0 1 0 0 1 0 1 -1 0 1 0 1 0 0 0 0 -1 -1 0 0 0 1 0 1 -1 -1 -2 -1 -2 1 0 2
-1 -1 0 0 0 0 0 1 0 0 1 0 -1 -1 1 1 0 1 0 0 -1 1 1 -1 0 0 1 2 1 2 -1 0 -1 -2 -1 1
0 -1 1 0 1 0 0 1 0 -1 0 1 2 0 1 0 -1 -1 0 0 2 -2 -1 -1 1 0 -2 2 -2 -2 -2 0 2 3 2 -1
0 0 0 -1 0 -1 0 0 1 -1 -1 1 2 1 0 -1 -2 -1 0 0 1 0 -1 0 0 -1 -1 1 -1 -3 -1 0 1 3 1 0
-1 0 1 0 1 1 -1 1 0 0 1 -1 1 1 1 0 -2 -1 -1 0 0 -1 -1 0 1 1 -2 3 -1 -1 -3 1 1 4 2 0
1 0 0 0 0 0 0 0 -1 0 0 0 0 -1 -1 0 1 0 -1 0 1 -1 -1 0 0 0 -2 0 -1 0 1 1 0 -1 -1 -2
-1 0 1 0 0 1 0 0 1 0 1 -1 -1 0 1 2 0 0 0 -1 -1 -1 1 0 1 1 1 1 0 0 -2 -1 0 1 1 1
0 1 1 1 -1 0 -1 -1 1 0 -1 -1 -1 0 0 1 1 0 1 0 0 0 2 2 -1 2 1 -4 1 0 2 -2 -1 0 0 1
0 -1 -1 -1 0 -2 2 -1 1 -2 -1 2 1 0 0 0 0 1 1 -1 0 1 -1 -2 0 -3 2 -1 0 -1 1 -1 1 -2 1 1
0 0 0 0 -1 -1 0 1 1 -1 -2 0 0 0 1 0 -1 1 0 -1 1 1 -1 -1 0 0 -1 -1 -1 0 0 0 1 1 1 -1
0 -1 0 0 0 0 0 0 0 -1 1 1 1 0 0 0 -1 -1 0 0 0 0 0 0 0 -1 0 3 0 -2 -1 0 0 1 0 1
0 0 0 0 0 0 1 0 0 -1 1 0 0 -1 0 1 1 0 0 0 0 -1 0 0 0 -1 0 1 0 1 -1 0 0 -1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 -1 0 0 1 -2 0 0 1 0 -1 1 -2 -2 -2 -1 0 1 0 0
0 -1 0 0 1 1 -1 1 -1 1 1 0 1 1 0 -1 -2 -1 -1 1 0 0 -1 0 0 1 -2 4 -1 -1 -2 2 0 3 0 0
1 1 0 0 -1 -1 0 0 0 0 -2 -1 -1 -1 0 0 1 1 0 -1 1 1 0 0 0 0 -1 -3 0 1 2 0 0 -2 -1 -1
0 1 0 0 -1 0 0 0 0 0 -1 0 0 0 -1 0 1 0 0 0 1 -1 0 0 0 0 -1 -2 -1 -1 1 -1 -1 -1 -1 -1
1 -1 -2 -1 0 -2 2 0 0 -2 0 2 1 -1 0 -1 0 1 0 0 0 2 -2 -2 -1 -4 1 1 1 1 1 1 1 -3 0 0
0 -1 -1 0 0 0 -1 0 -1 0 1 1 0 0 -1 -1 0 0 0 1 0 1 0 0 -1 0 0 1 1 -1 2 0 -2 -2 -2 1
0 0 1 1 0 1 -1 2 -1 1 0 -1 -1 -1 1 0 0 0 -1 0 1 -1 0 0 1 2 -2 1 -1 2 -1 1 1 1 0 -3
0 1 1 0 0 0 0 -1 1 0 -1 -1 0 1 0 1 0 0 0 -1 0 -1 0 0 1 1 0 -2 -1 -1 -1 -1 0 1 1 1
1 0 -1 0 -1 -1 0 0 -1 0 -1 1 -1 -1 -1 -1 1 1 0 0 1 1 -1 -1 0 -1 0 -2 0 1 3 0 0 -4 -2 -2
36
-1 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 -1 0 0 0 -1 0 -1 0 -1 2 -1 1 1 0 0 0 0 3 0 2 -2
0 0 -1 -1 0 -1 1 -1 0 -1 -1 2 1 0 0 -1 0 1 0 -1 1 0 -1 -2 1 -2 1 -1 0 -1 1 -1 1 -2 1 0
-1 1 0 0 -2 -1 0 -1 2 -1 -2 1 -1 0 0 0 0 1 2 -1 0 1 1 0 0 0 2 -4 0 -1 3 -3 0 -1 0 0
1 -1 -1 -1 0 -1 1 0 -1 -1 0 1 1 0 0 -1 0 1 -1 0 1 1 -3 -3 0 -2 -1 1 -1 0 0 1 0 -3 0 0
0 0 0 0 0 0 -1 1 -1 1 0 1 0 0 0 -2 -1 0 -1 0 1 0 -1 0 1 0 -1 1 0 0 1 1 2 1 0 -4
0 0 0 0 0 0 0 -1 0 0 0 1 0 0 -1 -1 0 0 0 0 0 0 0 0 1 -1 2 -1 1 -1 2 -1 1 -1 0 -1
-1 1 1 0 -1 1 -1 0 1 0 0 -1 -1 0 0 1 1 0 0 0 1 -1 1 0 0 2 -2 -1 -1 -1 0 -1 -2 0 -1 0
-1 0 0 -1 0 0 1 -1 1 -1 1 1 1 0 0 0 0 -1 1 0 -1 0 1 0 0 -2 2 1 1 -1 0 -1 1 0 1 1
-1 -1 -1 -1 0 0 0 -1 0 0 2 1 0 0 -1 -1 0 0 0 1 -3 2 1 0 -1 -2 3 2 3 0 2 0 -1 -3 -1 2
-1 0 0 -1 0 0 0 0 1 0 1 0 0 0 1 0 -1 0 0 0 -1 1 0 -1 0 0 0 2 0 0 -1 0 0 0 0 1
0 0 -1 0 0 -1 1 -1 1 -1 0 -1 0 0 0 1 1 1 1 0 -2 2 1 0 -2 -1 2 -1 2 2 0 0 -2 -2 0 4
-1 1 -1 0 -2 -1 0 -2 2 -1 -1 1 -1 1 -2 0 0 0 2 0 -2 2 2 2 -2 -1 4 -4 2 -2 4 -3 -2 -1 -1 2
0 0 -1 0 0 0 0 -1 0 0 0 0 0 1 -1 0 0 0 1 1 -1 1 1 1 -1 0 2 -1 2 0 1 -1 -2 -1 -1 3
0 0 0 0 0 1 0 -1 0 -1 1 0 0 0 -1 1 1 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 -1 -1 -1 0 2
1 0 0 0 0 -1 0 1 -1 0 -1 0 0 -1 0 -1 0 1 -2 -1 1 0 -2 -2 2 -1 -1 1 -1 1 0 2 2 -2 0 -3
1 0 0 0 1 0 0 0 -1 0 0 0 1 1 -1 -1 -1 -1 -1 0 1 -1 -2 0 1 0 -1 1 -1 -1 -1 1 1 2 1 -1
0 1 1 1 -1 1 -1 0 0 1 -1 -1 -1 1 -1 1 0 -1 0 0 0 -2 1 2 0 3 -1 -2 -2 -1 0 -1 -1 2 -1 -1
0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0 1 1 0 0 0 0 2 -1 0 0 0 2 -3 -1 -1 0 -1 0 -1 1 0 1
0 0 0 0 0 -1 0 0 -1 0 0 1 0 -1 1 -1 0 0 0 0 1 0 0 -1 1 -1 0 1 1 1 1 1 2 -1 1 -2
1 0 1 1 1 0 -1 2 -1 1 -1 -1 0 0 1 0 0 0 -1 0 2 -1 -1 0 1 2 -3 0 -2 1 -2 1 1 2 0 -2
-1 0 0 0 0 1 0 -2 1 0 2 -1 -1 0 -1 2 1 0 1 1 -3 1 3 2 -2 1 3 -1 3 1 1 -2 -4 -2 -2 5
0 1 0 1 -1 0 -1 0 1 0 -2 0 -1 1 -1 0 0 0 1 0 1 0 1 2 -1 2 0 -4 0 -1 2 -2 -1 2 -1 -1
-1 0 0 0 1 1 0 0 1 -1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 -1 0 0 0 1 0 -1 -1 0 2 1 2
-1 1 0 0 -1 0 -1 -1 1 0 0 0 -1 0 -1 1 1 0 1 1 -1 1 3 2 -2 1 1 -2 3 0 3 -1 -3 -1 -2 2
-1 2 1 2 -1 1 -1 -1 1 1 0 -2 -3 0 -1 2 2 -1 2 1 -2 0 5 5 -2 3 3 -5 3 2 3 -2 -2 1 -1 1
0 0 0 0 -1 0 -1 0 0 0 -1 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 1 -1 -1 -1 -2 0 -1 -2 0 -1 0
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 1 1 0 0 2 -1 1 0 1 -1 -1 -1 -1 1
-1 0 0 -1 0 1 0 -1 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 0 -1 1 0 0 1 0 -1 0 -1 0 -1 0 1
1 0 1 1 -1 0 -1 1 -1 1 -1 -1 0 0 0 0 0 -1 -1 0 2 -2 -1 0 1 2 -3 0 -3 -1 -1 1 0 1 0 -3
-1 0 -1 0 0 1 1 -2 1 0 2 0 -1 0 -1 1 1 0 2 1 -4 2 3 2 -2 -1 5 -1 4 1 2 -2 -2 -2 -1 5
-1 0 0 -1 1 1 1 -1 0 0 2 0 0 0 0 0 0 0 0 0 -2 0 0 -1 1 -1 2 2 1 1 -1 0 1 -1 1 2
0 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 -1 0 0 0 0 0 -1 1 1 1 -1 -1 2 -1 2 0 2 0 -1 -1 0 1
1 -1 0 -1 1 0 0 1 -1 -1 0 0 2 1 0 0 -1 0 -1 0 2 -1 -3 -2 0 0 -4 2 -3 -2 -3 1 -1 1 0 1
0 1 1 1 0 1 0 0 0 1 0 -2 -1 0 0 1 0 -1 0 0 -1 -1 1 2 0 2 0 -1 -1 1 -1 0 0 2 0 0
-1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 -1 1 1 1 0
-1 0 0 -1 0 0 1 -1 1 -1 1 0 0 0 0 1 0 0 1 0 -2 1 1 0 -1 -1 2 0 1 0 0 -1 -1 -1 0 3
-
PROPERTIES
INTEGRAL = 1
MODULAR = 2
-
URL
Second 2-modular lattice related to SL2(19):
2-modular lattice
-
LAST_LINE (required)
Haftungsausschluss/Disclaimer
Gabriele Nebe