We give the following information: each row stands for a set of classes
which have representatives with the same centralizer in G. The column "#
classes" tells how many classes are in this set. The column "|C(su)(q)|,
q=2" tells the order of the centralizer of elements in these classes. The
next two columns describe the centralizer of the semisimple part s of an
element in these classes; "type of C(s)" gives the semisimple part of the
centralizer of s in G under the restricted Frobenius morphism, and
"|Z0(C(s))(q)|" gives the number of rational points in the
radical of the centralizer of s (generically, as polynomial in q (= 2), the
polynomials are factorized into cyclotomic polynomials, phiN means the
evaluation of the N-th cyclotomic polynomial at q). Finally, in column "type
of u" a label for the class of the unipotent part u is given; we don't give
precise explanations of that labeling here.
There are 531 conjugacy classes.
| | # classes | |C(su)(q)|, q=2 |
type of C(s) |
|Z0(C(s))(q)| | type of u |
|
1 |
1 |
2^63*3^11*5^2*7^3*11*13*17*19*31*43*73*127 |
E7(q) |
1 |
- |
|
2 |
1 |
2^63*3^8*5^2*7^2*11*17*31 |
E7(q) |
1 |
A1 |
|
3 |
1 |
2^59*3^6*5^2*7*17 |
E7(q) |
1 |
2A1 |
|
4 |
1 |
2^51*3^6*5^2*7^2*13*17 |
E7(q) |
1 |
3A1'' |
|
5 |
1 |
2^55*3^5*5*7 |
E7(q) |
1 |
3A1' |
|
6 |
1 |
2^48*3^4*5*7^2*31 |
E7(q) |
1 |
A2 |
|
7 |
1 |
2^48*3^7*5*7*11 |
E7(q) |
1 |
A2 |
|
8 |
1 |
2^51*3^4*5*7 |
E7(q) |
1 |
4A1 |
|
9 |
1 |
2^48*3^2*5*7 |
E7(q) |
1 |
A2+A1 |
|
10 |
1 |
2^48*3^5*5 |
E7(q) |
1 |
A2+A1 |
|
11 |
1 |
2^45*3^3 |
E7(q) |
1 |
A2+2A1 |
|
12 |
1 |
2^41*3^3*7 |
E7(q) |
1 |
A2+3A1 |
|
13 |
1 |
2^39*3^4*7 |
E7(q) |
1 |
2A2 |
|
14 |
1 |
2^35*3^5*5*7 |
E7(q) |
1 |
A3 |
|
15 |
1 |
2^35*3^4*5*7 |
E7(q) |
1 |
(A3+A1)'' |
|
16 |
1 |
2^39*3^2 |
E7(q) |
1 |
2A2+A1 |
|
17 |
1 |
2^35*3^3 |
E7(q) |
1 |
(A3+A1)' |
|
18 |
1 |
2^34*3^4 |
E7(q) |
1 |
D4(a1) |
|
19 |
1 |
2^34*3^2*5 |
E7(q) |
1 |
D4(a1) |
|
20 |
1 |
2^33*3^3*7 |
E7(q) |
1 |
D4(a1) |
|
21 |
1 |
2^35*3^2 |
E7(q) |
1 |
A3+2A1 |
|
22 |
1 |
2^34*3^2 |
E7(q) |
1 |
D4(a1)+A1 |
|
23 |
1 |
2^34*3*5 |
E7(q) |
1 |
D4(a1)+A1 |
|
24 |
1 |
2^26*3^4*5*7 |
E7(q) |
1 |
D4 |
|
25 |
1 |
2^26*3^4*5*7 |
E7(q) |
1 |
D4 |
|
26 |
1 |
2^33*3^2 |
E7(q) |
1 |
(A3+A2)2 |
|
27 |
1 |
2^33*3 |
E7(q) |
1 |
A3+A2 |
|
28 |
1 |
2^31*3 |
E7(q) |
1 |
A3+A2+A1 |
|
29 |
1 |
2^28*3*7 |
E7(q) |
1 |
A4 |
|
30 |
1 |
2^28*3^4 |
E7(q) |
1 |
A4 |
|
31 |
1 |
2^26*3^2*5 |
E7(q) |
1 |
D4+A1 |
|
32 |
1 |
2^26*3^2*5 |
E7(q) |
1 |
D4+A1 |
|
33 |
1 |
2^23*3^3*7 |
E7(q) |
1 |
A5'' |
|
34 |
1 |
2^28 |
E7(q) |
1 |
A4+A1 |
|
35 |
1 |
2^28*3^2 |
E7(q) |
1 |
A4+A1 |
|
36 |
1 |
2^25*3 |
E7(q) |
1 |
A4+A2 |
|
37 |
1 |
2^25*3 |
E7(q) |
1 |
D5(a1) |
|
38 |
1 |
2^25*3^2 |
E7(q) |
1 |
D5(a1) |
|
39 |
1 |
2^23*3 |
E7(q) |
1 |
D5(a1)+A1 |
|
40 |
1 |
2^21*3^2 |
E7(q) |
1 |
A5' |
|
41 |
1 |
2^23*3 |
E7(q) |
1 |
(A5+A1)'' |
|
42 |
1 |
2^21*3 |
E7(q) |
1 |
D6(a2) |
|
43 |
1 |
2^22*3 |
E7(q) |
1 |
(A5+A1)' |
|
44 |
1 |
2^22*3 |
E7(q) |
1 |
(A5+A1)' |
|
45 |
1 |
2^18*3^2 |
E7(q) |
1 |
D5 |
|
46 |
1 |
2^18*3^2 |
E7(q) |
1 |
D5 |
|
47 |
1 |
2^22*3 |
E7(q) |
1 |
D6(a2)+A1 |
|
48 |
1 |
2^22 |
E7(q) |
1 |
D6(a2)+A1 |
|
49 |
1 |
2^21*3 |
E7(q) |
1 |
D6(a2)+A1 |
|
50 |
1 |
2^18*3 |
E7(q) |
1 |
D5+A1 |
|
51 |
1 |
2^18*3 |
E7(q) |
1 |
D5+A1 |
|
52 |
1 |
2^18*3 |
E7(q) |
1 |
D6(a1) |
|
53 |
1 |
2^18*3 |
E7(q) |
1 |
D6(a1) |
|
54 |
1 |
2^19 |
E7(q) |
1 |
A6 |
|
55 |
1 |
2^19*3 |
E7(q) |
1 |
A6 |
|
56 |
1 |
2^17 |
E7(q) |
1 |
D6(a1)+A1 |
|
57 |
1 |
2^14*3 |
E7(q) |
1 |
D6 |
|
58 |
1 |
2^14*3 |
E7(q) |
1 |
D6 |
|
59 |
1 |
2^15 |
E7(q) |
1 |
E6(a1) |
|
60 |
1 |
2^15*3 |
E7(q) |
1 |
E6(a1) |
|
61 |
1 |
2^12*3 |
E7(q) |
1 |
E6 |
|
62 |
1 |
2^12*3 |
E7(q) |
1 |
E6 |
|
63 |
1 |
2^14 |
E7(q) |
1 |
D6+A1 |
|
64 |
1 |
2^14 |
E7(q) |
1 |
D6+A1 |
|
65 |
1 |
2^12 |
E7(q) |
1 |
E7(a2) |
|
66 |
1 |
2^12 |
E7(q) |
1 |
E7(a2) |
|
67 |
1 |
2^10 |
E7(q) |
1 |
E7(a1) |
|
68 |
1 |
2^10 |
E7(q) |
1 |
E7(a1) |
|
69 |
1 |
2^9 |
E7(q) |
1 |
E7 |
|
70 |
1 |
2^9 |
E7(q) |
1 |
E7 |
|
71 |
1 |
2^9 |
E7(q) |
1 |
E7 |
|
72 |
1 |
2^9 |
E7(q) |
1 |
E7 |
|
73 |
1 |
2^18*3^10*5*7*11 |
2A5(q) + 2A2(q) |
1 |
[ [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1 ] ] |
|
74 |
1 |
2^18*3^8*5*7*11 |
2A5(q) + 2A2(q) |
1 |
[ [ 1, 1, 1, 1, 1, 1 ], [ 2, 1 ] ] |
|
75 |
1 |
2^17*3^7*5*7*11 |
2A5(q) + 2A2(q) |
1 |
[ [ 1, 1, 1, 1, 1, 1 ], [ 3 ] ] |
|
76 |
1 |
2^18*3^8*5 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 1, 1, 1, 1 ], [ 1, 1, 1 ] ] |
|
77 |
1 |
2^18*3^6*5 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 1, 1, 1, 1 ], [ 2, 1 ] ] |
|
78 |
1 |
2^17*3^5*5 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 1, 1, 1, 1 ], [ 3 ] ] |
|
79 |
1 |
2^17*3^6 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 1, 1 ], [ 1, 1, 1 ] ] |
|
80 |
1 |
2^17*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 1, 1 ], [ 2, 1 ] ] |
|
81 |
1 |
2^16*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 1, 1 ], [ 3 ] ] |
|
82 |
1 |
2^15*3^6 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 2 ], [ 1, 1, 1 ] ] |
|
83 |
1 |
2^15*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 2 ], [ 2, 1 ] ] |
|
84 |
1 |
2^14*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 2 ], [ 3 ] ] |
|
85 |
1 |
2^14*3^7 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 1, 1, 1 ], [ 1, 1, 1 ] ] |
|
86 |
1 |
2^14*3^5 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 1, 1, 1 ], [ 2, 1 ] ] |
|
87 |
1 |
2^13*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 1, 1, 1 ], [ 3 ] ] |
|
88 |
1 |
2^14*3^5 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 2, 1 ], [ 1, 1, 1 ] ] |
|
89 |
1 |
2^14*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 2, 1 ], [ 2, 1 ] ] |
|
90 |
1 |
2^13*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 2, 1 ], [ 3 ] ] |
|
91 |
1 |
2^12*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 1, 1, 1 ] ] |
|
92 |
1 |
2^12*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 2, 1 ] ] |
|
93 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 3 ] ] |
|
94 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 3 ] ] |
|
95 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 3 ] ] |
|
96 |
1 |
2^11*3^5 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 1, 1 ], [ 1, 1, 1 ] ] |
|
97 |
1 |
2^11*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 1, 1 ], [ 2, 1 ] ] |
|
98 |
1 |
2^10*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 1, 1 ], [ 3 ] ] |
|
99 |
1 |
2^11*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 2 ], [ 1, 1, 1 ] ] |
|
100 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 2 ], [ 2, 1 ] ] |
|
101 |
1 |
2^10*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 2 ], [ 3 ] ] |
|
102 |
1 |
2^9*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 5, 1 ], [ 1, 1, 1 ] ] |
|
103 |
1 |
2^9*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 5, 1 ], [ 2, 1 ] ] |
|
104 |
1 |
2^8*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 5, 1 ], [ 3 ] ] |
|
105 |
1 |
2^8*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 1, 1, 1 ] ] |
|
106 |
1 |
2^8*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 2, 1 ] ] |
|
107 |
1 |
2^7*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 3 ] ] |
|
108 |
1 |
2^7*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 3 ] ] |
|
109 |
1 |
2^7*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 3 ] ] |
|
110 |
1 |
2^36*3^11*5^2*7^2*11*13*17*19 |
2E6(q) |
phi2 |
- |
|
111 |
1 |
2^36*3^8*5*7*11 |
2E6(q) |
phi2 |
A1 |
|
112 |
1 |
2^33*3^6*5*7 |
2E6(q) |
phi2 |
2A1 |
|
113 |
1 |
2^31*3^5 |
2E6(q) |
phi2 |
3A1 |
|
114 |
1 |
2^27*3^7 |
2E6(q) |
phi2 |
A2 |
|
115 |
1 |
2^27*3^4*5*7 |
2E6(q) |
phi2 |
A2 |
|
116 |
1 |
2^26*3^5 |
2E6(q) |
phi2 |
A2+A1 |
|
117 |
1 |
2^22*3^4*7 |
2E6(q) |
phi2 |
2A2 |
|
118 |
1 |
2^25*3^3 |
2E6(q) |
phi2 |
A2+2A1 |
|
119 |
1 |
2^19*3^4*5 |
2E6(q) |
phi2 |
A3 |
|
120 |
1 |
2^22*3^2 |
2E6(q) |
phi2 |
2A2+A1 |
|
121 |
1 |
2^19*3^3 |
2E6(q) |
phi2 |
A3+A1 |
|
122 |
1 |
2^19*3^4 |
2E6(q) |
phi2 |
D4(a1) |
|
123 |
1 |
2^19*3^2 |
2E6(q) |
phi2 |
D4(a1) |
|
124 |
1 |
2^18*3^3 |
2E6(q) |
phi2 |
D4(a1) |
|
125 |
1 |
2^15*3^3 |
2E6(q) |
phi2 |
A4 |
|
126 |
1 |
2^14*3^4 |
2E6(q) |
phi2 |
D4 |
|
127 |
1 |
2^14*3^4 |
2E6(q) |
phi2 |
D4 |
|
128 |
1 |
2^15*3^2 |
2E6(q) |
phi2 |
A4+A1 |
|
129 |
1 |
2^13*3^2 |
2E6(q) |
phi2 |
D5(a1) |
|
130 |
1 |
2^12*3^2 |
2E6(q) |
phi2 |
A5 |
|
131 |
1 |
2^13*3 |
2E6(q) |
phi2 |
A5+A1 |
|
132 |
1 |
2^13*3 |
2E6(q) |
phi2 |
A5+A1 |
|
133 |
1 |
2^10*3^2 |
2E6(q) |
phi2 |
D5 |
|
134 |
1 |
2^10*3^2 |
2E6(q) |
phi2 |
D5 |
|
135 |
1 |
2^8*3 |
2E6(q) |
phi2 |
E6(a1) |
|
136 |
1 |
2^7*3 |
2E6(q) |
phi2 |
E6 |
|
137 |
1 |
2^7*3 |
2E6(q) |
phi2 |
E6 |
|
138 |
1 |
2^21*3^8*5^2*7*11*17 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 1, 1 ] ] |
|
139 |
1 |
2^21*3^7*5^2*7*11*17 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 2 ] ] |
|
140 |
1 |
2^21*3^7*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
|
141 |
1 |
2^21*3^6*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
|
142 |
1 |
2^18*3^6*5*7 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 1, 1 ] ] |
|
143 |
1 |
2^18*3^5*5*7 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 2 ] ] |
|
144 |
1 |
2^19*3^5*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
|
145 |
1 |
2^19*3^4*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
|
146 |
1 |
2^18*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 1 ] ], [ 1, 1 ] ] |
|
147 |
1 |
2^18*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 1 ] ], [ 2 ] ] |
|
148 |
1 |
2^16*3^5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
149 |
1 |
2^16*3^3*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
150 |
1 |
2^16*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
151 |
1 |
2^16*3^2*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
152 |
1 |
2^15*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 0, -1 ] ], [ 1, 1 ] ] |
|
153 |
1 |
2^15*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 0, -1 ] ], [ 2 ] ] |
|
154 |
1 |
2^12*3^4*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
|
155 |
1 |
2^12*3^3*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 2 ] ] |
|
156 |
1 |
2^14*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 1, -1 ] ], [ 1, 1 ] ] |
|
157 |
1 |
2^14*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 1, -1 ] ], [ 2 ] ] |
|
158 |
1 |
2^12*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 2, 2 ], [ -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
|
159 |
1 |
2^12*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 2, 2 ], [ -1, 1, -1, 1 ] ], [ 2 ] ] |
|
160 |
1 |
2^11*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 0 ] ], [ 1, 1 ] ] |
|
161 |
1 |
2^11*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 0 ] ], [ 2 ] ] |
|
162 |
1 |
2^12*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
163 |
1 |
2^12*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
164 |
1 |
2^12*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
|
165 |
1 |
2^12*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
|
166 |
1 |
2^9*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 5, 5 ], [ -1, -1, -1, -1, -1 ] ], [ 1, 1 ] ] |
|
167 |
1 |
2^9*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 5, 5 ], [ -1, -1, -1, -1, -1 ] ], [ 2 ] ] |
|
168 |
1 |
2^9*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
169 |
1 |
2^9*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
170 |
1 |
2^9*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
171 |
1 |
2^9*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
172 |
1 |
2^8*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 4 ], [ -1, -1, -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
|
173 |
1 |
2^8*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 4 ], [ -1, -1, -1, 1, -1, 1 ] ], [ 2 ] ] |
|
174 |
1 |
2^7*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
175 |
1 |
2^7*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
176 |
1 |
2^7*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
177 |
1 |
2^7*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
178 |
1 |
2^9*3^6*7*19 |
2A2(q3) |
phi2 |
[ 1, 1, 1 ] |
|
179 |
1 |
2^9*3^3 |
2A2(q3) |
phi2 |
[ 2, 1 ] |
|
180 |
1 |
2^6*3^2 |
2A2(q3) |
phi2 |
[ 3 ] |
|
181 |
1 |
2^6*3^2 |
2A2(q3) |
phi2 |
[ 3 ] |
|
182 |
1 |
2^6*3^2 |
2A2(q3) |
phi2 |
[ 3 ] |
|
183 |
1 |
2^21*3^9*5*7*11*43 |
2A6(q) |
phi2 |
[ 1, 1, 1, 1, 1, 1, 1 ] |
|
184 |
1 |
2^21*3^7*5*11 |
2A6(q) |
phi2 |
[ 2, 1, 1, 1, 1, 1 ] |
|
185 |
1 |
2^20*3^6 |
2A6(q) |
phi2 |
[ 2, 2, 1, 1, 1 ] |
|
186 |
1 |
2^16*3^6*5 |
2A6(q) |
phi2 |
[ 3, 1, 1, 1, 1 ] |
|
187 |
1 |
2^18*3^5 |
2A6(q) |
phi2 |
[ 2, 2, 2, 1 ] |
|
188 |
1 |
2^16*3^4 |
2A6(q) |
phi2 |
[ 3, 2, 1, 1 ] |
|
189 |
1 |
2^15*3^3 |
2A6(q) |
phi2 |
[ 3, 2, 2 ] |
|
190 |
1 |
2^12*3^5 |
2A6(q) |
phi2 |
[ 4, 1, 1, 1 ] |
|
191 |
1 |
2^13*3^3 |
2A6(q) |
phi2 |
[ 3, 3, 1 ] |
|
192 |
1 |
2^12*3^3 |
2A6(q) |
phi2 |
[ 4, 2, 1 ] |
|
193 |
1 |
2^11*3^2 |
2A6(q) |
phi2 |
[ 4, 3 ] |
|
194 |
1 |
2^9*3^3 |
2A6(q) |
phi2 |
[ 5, 1, 1 ] |
|
195 |
1 |
2^9*3^2 |
2A6(q) |
phi2 |
[ 5, 2 ] |
|
196 |
1 |
2^7*3^2 |
2A6(q) |
phi2 |
[ 6, 1 ] |
|
197 |
1 |
2^6*3 |
2A6(q) |
phi2 |
[ 7 ] |
|
198 |
1 |
2^30*3^9*5^2*7^2*11*17*31 |
D6(q) |
phi2 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
199 |
1 |
2^30*3^7*5^2*7 |
D6(q) |
phi2 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
200 |
1 |
2^26*3^6*5^2*7*17 |
D6(q) |
phi2 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
201 |
1 |
2^28*3^5*5 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
202 |
1 |
2^24*3^5*5*7 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2 ], [ -1, 0 ], '+' ] |
|
203 |
1 |
2^24*3^5*5*7 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2 ], [ -1, 0 ], '-' ] |
|
204 |
1 |
2^26*3^4*5 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
205 |
1 |
2^23*3^3*5*7 |
D6(q) |
phi2 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
206 |
1 |
2^23*3^6*5 |
D6(q) |
phi2 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
207 |
1 |
2^24*3^3*5 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
208 |
1 |
2^18*3^5*5*7 |
D6(q) |
phi2 |
[ [ 4, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
209 |
1 |
2^23*3^2 |
D6(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 0, -1 ] ] |
|
210 |
1 |
2^23*3^4 |
D6(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 0, -1 ] ] |
|
211 |
1 |
2^20*3^3 |
D6(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 1, -1 ] ] |
|
212 |
1 |
2^18*3^3 |
D6(q) |
phi2 |
[ [ 3, 3, 3, 3 ], [ -1, -1, -1 ] ] |
|
213 |
1 |
2^18*3^3 |
D6(q) |
phi2 |
[ [ 4, 2, 2, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
214 |
1 |
2^16*3^4 |
D6(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 0 ] ] |
|
215 |
1 |
2^17*3^3 |
D6(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
216 |
1 |
2^17*3^2*5 |
D6(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
217 |
1 |
2^16*3^3 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 0, -1, 0 ], '+' ] |
|
218 |
1 |
2^16*3^3 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 0, -1, 0 ], '-' ] |
|
219 |
1 |
2^16*3^2 |
D6(q) |
phi2 |
[ [ 4, 3, 3, 2 ], [ -1, 1, -1, 1 ] ] |
|
220 |
1 |
2^16*3^2 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 0, -1, 1 ] ] |
|
221 |
1 |
2^16*3^2 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 1, -1, 0 ] ] |
|
222 |
1 |
2^13*3^3*5 |
D6(q) |
phi2 |
[ [ 6, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
223 |
1 |
2^13*3^3*5 |
D6(q) |
phi2 |
[ [ 6, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
224 |
1 |
2^16*3 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 1, -1, 1 ] ] |
|
225 |
1 |
2^13*3 |
D6(q) |
phi2 |
[ [ 5, 5, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
|
226 |
1 |
2^13*3^3 |
D6(q) |
phi2 |
[ [ 5, 5, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
|
227 |
1 |
2^13*3^2 |
D6(q) |
phi2 |
[ [ 6, 2, 2, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
228 |
1 |
2^13*3^2 |
D6(q) |
phi2 |
[ [ 6, 2, 2, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
229 |
1 |
2^12*3 |
D6(q) |
phi2 |
[ [ 6, 4, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
230 |
1 |
2^12*3^2 |
D6(q) |
phi2 |
[ [ 6, 4, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
231 |
1 |
2^10*3^2 |
D6(q) |
phi2 |
[ [ 6, 6 ], [ -1, -1, -1, -1, -1, 0 ], '+' ] |
|
232 |
1 |
2^10*3^2 |
D6(q) |
phi2 |
[ [ 6, 6 ], [ -1, -1, -1, -1, -1, 0 ], '-' ] |
|
233 |
1 |
2^10*3 |
D6(q) |
phi2 |
[ [ 6, 6 ], [ -1, -1, -1, -1, -1, 1 ] ] |
|
234 |
1 |
2^9*3^2 |
D6(q) |
phi2 |
[ [ 8, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
235 |
1 |
2^9*3^2 |
D6(q) |
phi2 |
[ [ 8, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
236 |
1 |
2^9*3 |
D6(q) |
phi2 |
[ [ 8, 4 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
237 |
1 |
2^9*3 |
D6(q) |
phi2 |
[ [ 8, 4 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
238 |
1 |
2^7*3 |
D6(q) |
phi2 |
[ [ 10, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
239 |
1 |
2^7*3 |
D6(q) |
phi2 |
[ [ 10, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
240 |
1 |
2^6*3^3*7^3 |
A2(q) + A1(q3) |
phi3 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
|
241 |
1 |
2^6*3*7^2 |
A2(q) + A1(q3) |
phi3 |
[ [ 1, 1, 1 ], [ 2 ] ] |
|
242 |
1 |
2^6*3^2*7^2 |
A2(q) + A1(q3) |
phi3 |
[ [ 2, 1 ], [ 1, 1 ] ] |
|
243 |
1 |
2^6*7 |
A2(q) + A1(q3) |
phi3 |
[ [ 2, 1 ], [ 2 ] ] |
|
244 |
1 |
2^5*3^2*7^2 |
A2(q) + A1(q3) |
phi3 |
[ [ 3 ], [ 1, 1 ] ] |
|
245 |
1 |
2^5*7 |
A2(q) + A1(q3) |
phi3 |
[ [ 3 ], [ 2 ] ] |
|
246 |
1 |
2^13*3^5*5^2*7*17 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 1, 1 ] ] |
|
247 |
1 |
2^13*3^4*5^2*7*17 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 2 ] ] |
|
248 |
1 |
2^13*3^3*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
|
249 |
1 |
2^13*3^2*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
|
250 |
1 |
2^11*3^3*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 1, 1 ] ] |
|
251 |
1 |
2^11*3^2*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 2 ] ] |
|
252 |
1 |
2^11*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 1, 1 ] ] |
|
253 |
1 |
2^11*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 2 ] ] |
|
254 |
1 |
2^10*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
255 |
1 |
2^10*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
256 |
1 |
2^10*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
257 |
1 |
2^10*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
258 |
1 |
2^7*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
|
259 |
1 |
2^7*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 2 ] ] |
|
260 |
1 |
2^7*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
261 |
1 |
2^7*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
|
262 |
1 |
2^6*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
263 |
1 |
2^6*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
264 |
1 |
2^6*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
265 |
1 |
2^6*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
266 |
1 |
2^15*3^4*5*7^3*31 |
A5(q) |
phi3 |
[ 1, 1, 1, 1, 1, 1 ] |
|
267 |
1 |
2^15*3^2*5*7^2 |
A5(q) |
phi3 |
[ 2, 1, 1, 1, 1 ] |
|
268 |
1 |
2^14*3^2*7 |
A5(q) |
phi3 |
[ 2, 2, 1, 1 ] |
|
269 |
1 |
2^12*3*7^2 |
A5(q) |
phi3 |
[ 2, 2, 2 ] |
|
270 |
1 |
2^11*3*7^2 |
A5(q) |
phi3 |
[ 3, 1, 1, 1 ] |
|
271 |
1 |
2^11*7 |
A5(q) |
phi3 |
[ 3, 2, 1 ] |
|
272 |
1 |
2^9*3*7 |
A5(q) |
phi3 |
[ 3, 3 ] |
|
273 |
1 |
2^8*3*7 |
A5(q) |
phi3 |
[ 4, 1, 1 ] |
|
274 |
1 |
2^8*7 |
A5(q) |
phi3 |
[ 4, 2 ] |
|
275 |
1 |
2^6*7 |
A5(q) |
phi3 |
[ 5, 1 ] |
|
276 |
1 |
2^5*7 |
A5(q) |
phi3 |
[ 6 ] |
|
277 |
1 |
2^10*3^7*5*11 |
2A4(q) |
phi2 phi6 |
[ 1, 1, 1, 1, 1 ] |
|
278 |
1 |
2^10*3^6 |
2A4(q) |
phi2 phi6 |
[ 2, 1, 1, 1 ] |
|
279 |
1 |
2^9*3^4 |
2A4(q) |
phi2 phi6 |
[ 2, 2, 1 ] |
|
280 |
1 |
2^7*3^4 |
2A4(q) |
phi2 phi6 |
[ 3, 1, 1 ] |
|
281 |
1 |
2^7*3^3 |
2A4(q) |
phi2 phi6 |
[ 3, 2 ] |
|
282 |
1 |
2^5*3^3 |
2A4(q) |
phi2 phi6 |
[ 4, 1 ] |
|
283 |
1 |
2^4*3^2 |
2A4(q) |
phi2 phi6 |
[ 5 ] |
|
284 |
1 |
2^4*3^4*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 1, 1 ], [ 1, 1 ] ] |
|
285 |
1 |
2^4*3^3*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 1, 1 ], [ 2 ] ] |
|
286 |
1 |
2^4*3^3*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 2 ], [ 1, 1 ] ] |
|
287 |
1 |
2^4*3^2*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 2 ], [ 2 ] ] |
|
288 |
1 |
2^4*3^3*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 1, 1 ], [ 1, 1 ] ] |
|
289 |
1 |
2^4*3^2*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 1, 1 ], [ 2 ] ] |
|
290 |
1 |
2^4*3^2*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 2 ], [ 1, 1 ] ] |
|
291 |
1 |
2^4*3*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 2 ], [ 2 ] ] |
|
292 |
1 |
2^4*3^5*7 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
293 |
1 |
2^4*3^3 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 1, 1 ], [ 2 ] ] |
|
294 |
1 |
2^4*3^4*7 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 2 ], [ 1, 1 ] ] |
|
295 |
1 |
2^4*3^2 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 2 ], [ 2 ] ] |
|
296 |
1 |
2^6*3^4*5*7^2 |
A2(q2) |
phi2 phi3 |
[ 1, 1, 1 ] |
|
297 |
1 |
2^6*3^2*7 |
A2(q2) |
phi2 phi3 |
[ 2, 1 ] |
|
298 |
1 |
2^4*3*7 |
A2(q2) |
phi2 phi3 |
[ 3 ] |
|
299 |
1 |
2^12*3^5*5^2*7*17 |
2D4(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
300 |
1 |
2^12*3^3*5^2 |
2D4(q) |
phi2 phi4 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
301 |
1 |
2^10*3^3*5^2 |
2D4(q) |
phi2 phi4 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
302 |
1 |
2^10*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
303 |
1 |
2^9*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
304 |
1 |
2^9*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
305 |
1 |
2^6*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
306 |
1 |
2^6*3*5 |
2D4(q) |
phi2 phi4 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
|
307 |
1 |
2^5*3*5 |
2D4(q) |
phi2 phi4 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
308 |
1 |
2^5*3*5 |
2D4(q) |
phi2 phi4 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
309 |
1 |
2^12*3^4*7^3*13 |
3D4(q) |
phi1 phi3 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
310 |
1 |
2^12*3^2*7^2 |
3D4(q) |
phi1 phi3 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
311 |
1 |
2^10*3*7 |
3D4(q) |
phi1 phi3 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
312 |
1 |
2^9*7^2 |
3D4(q) |
phi1 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
313 |
1 |
2^9*3*7 |
3D4(q) |
phi1 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
314 |
1 |
2^6*7 |
3D4(q) |
phi1 phi3 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
|
315 |
1 |
2^5*7 |
3D4(q) |
phi1 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
316 |
1 |
2^5*7 |
3D4(q) |
phi1 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
317 |
1 |
2^12*3^6*7^2*13 |
3D4(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
318 |
1 |
2^12*3^4*7 |
3D4(q) |
phi2 phi6 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
319 |
1 |
2^10*3^3 |
3D4(q) |
phi2 phi6 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
320 |
1 |
2^9*3^2*7 |
3D4(q) |
phi2 phi6 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
321 |
1 |
2^9*3^3 |
3D4(q) |
phi2 phi6 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
322 |
1 |
2^6*3^2 |
3D4(q) |
phi2 phi6 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
|
323 |
1 |
2^5*3^2 |
3D4(q) |
phi2 phi6 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
324 |
1 |
2^5*3^2 |
3D4(q) |
phi2 phi6 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
325 |
1 |
2^7*3^4*5^2*7 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 1, 1 ] ] |
|
326 |
1 |
2^7*3^3*5^2*7 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 2 ] ] |
|
327 |
1 |
2^7*3^3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 1, 1 ] ] |
|
328 |
1 |
2^7*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 2 ] ] |
|
329 |
1 |
2^6*3^3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 2 ], [ 1, 1 ] ] |
|
330 |
1 |
2^6*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 2 ], [ 2 ] ] |
|
331 |
1 |
2^5*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 3, 1 ], [ 1, 1 ] ] |
|
332 |
1 |
2^5*3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 3, 1 ], [ 2 ] ] |
|
333 |
1 |
2^4*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 4 ], [ 1, 1 ] ] |
|
334 |
1 |
2^4*3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 4 ], [ 2 ] ] |
|
335 |
1 |
2^7*3^7*5 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1 ], [ 1, 1 ] ] |
|
336 |
1 |
2^7*3^6*5 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1 ], [ 2 ] ] |
|
337 |
1 |
2^7*3^5 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 1, 1 ], [ 1, 1 ] ] |
|
338 |
1 |
2^7*3^4 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 1, 1 ], [ 2 ] ] |
|
339 |
1 |
2^6*3^4 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 2 ], [ 1, 1 ] ] |
|
340 |
1 |
2^6*3^3 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 2 ], [ 2 ] ] |
|
341 |
1 |
2^5*3^4 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 3, 1 ], [ 1, 1 ] ] |
|
342 |
1 |
2^5*3^3 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 3, 1 ], [ 2 ] ] |
|
343 |
1 |
2^4*3^3 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 4 ], [ 1, 1 ] ] |
|
344 |
1 |
2^4*3^2 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 4 ], [ 2 ] ] |
|
345 |
1 |
2^4*3^7 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
|
346 |
1 |
2^4*3^6 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 1, 1, 1 ], [ 2 ] ] |
|
347 |
1 |
2^4*3^5 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 2, 1 ], [ 1, 1 ] ] |
|
348 |
1 |
2^4*3^4 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 2, 1 ], [ 2 ] ] |
|
349 |
1 |
2^3*3^4 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 3 ], [ 1, 1 ] ] |
|
350 |
1 |
2^3*3^3 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 3 ], [ 2 ] ] |
|
351 |
1 |
2^4*3^5*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
|
352 |
1 |
2^4*3^4*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 1, 1, 1 ], [ 2 ] ] |
|
353 |
1 |
2^4*3^3*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 2, 1 ], [ 1, 1 ] ] |
|
354 |
1 |
2^4*3^2*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 2, 1 ], [ 2 ] ] |
|
355 |
1 |
2^3*3^2*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 3 ], [ 1, 1 ] ] |
|
356 |
1 |
2^3*3*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 3 ], [ 2 ] ] |
|
357 |
1 |
2^3*3^4*5^2 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
358 |
1 |
2^3*3^3*5 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 1, 1 ], [ 2 ] ] |
|
359 |
1 |
2^3*3^3*5^2 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 2 ], [ 1, 1 ] ] |
|
360 |
1 |
2^3*3^2*5 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 2 ], [ 2 ] ] |
|
361 |
1 |
2^3*3^3*7^2 |
A1(q3) |
phi1 phi2 phi3 |
[ 1, 1 ] |
|
362 |
1 |
2^3*3*7 |
A1(q3) |
phi1 phi2 phi3 |
[ 2 ] |
|
363 |
1 |
2^6*3^4*5^2*7 |
A3(q) |
phi2^2 phi4 |
[ 1, 1, 1, 1 ] |
|
364 |
1 |
2^6*3^3*5 |
A3(q) |
phi2^2 phi4 |
[ 2, 1, 1 ] |
|
365 |
1 |
2^5*3^3*5 |
A3(q) |
phi2^2 phi4 |
[ 2, 2 ] |
|
366 |
1 |
2^4*3^2*5 |
A3(q) |
phi2^2 phi4 |
[ 3, 1 ] |
|
367 |
1 |
2^3*3^2*5 |
A3(q) |
phi2^2 phi4 |
[ 4 ] |
|
368 |
1 |
2^6*3^3*5*7^2 |
A3(q) |
phi1 phi2 phi3 |
[ 1, 1, 1, 1 ] |
|
369 |
1 |
2^6*3^2*7 |
A3(q) |
phi1 phi2 phi3 |
[ 2, 1, 1 ] |
|
370 |
1 |
2^5*3^2*7 |
A3(q) |
phi1 phi2 phi3 |
[ 2, 2 ] |
|
371 |
1 |
2^4*3*7 |
A3(q) |
phi1 phi2 phi3 |
[ 3, 1 ] |
|
372 |
1 |
2^3*3*7 |
A3(q) |
phi1 phi2 phi3 |
[ 4 ] |
|
373 |
1 |
2^3*3^2*7*13 |
A1(q3) |
phi12 |
[ 1, 1 ] |
|
374 |
1 |
2^3*13 |
A1(q3) |
phi12 |
[ 2 ] |
|
375 |
1 |
2^3*3^3*5*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
376 |
1 |
2^3*3^2*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 1, 1 ], [ 2 ] ] |
|
377 |
1 |
2^3*3^2*5*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 2 ], [ 1, 1 ] ] |
|
378 |
1 |
2^3*3*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 2 ], [ 2 ] ] |
|
379 |
1 |
2^3*3^3*7^2 |
A1(q3) |
phi1 phi2 phi3 |
[ 1, 1 ] |
|
380 |
1 |
2^3*3*7 |
A1(q3) |
phi1 phi2 phi3 |
[ 2 ] |
|
381 |
2 |
2^3*3^2*5*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
382 |
2 |
2^3*3*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 1, 1 ], [ 2 ] ] |
|
383 |
2 |
2^3*3*5*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 2 ], [ 1, 1 ] ] |
|
384 |
2 |
2^3*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 2 ], [ 2 ] ] |
|
385 |
2 |
2^2*3^2*5*17 |
A1(q2) |
phi2 phi8 |
[ 1, 1 ] |
|
386 |
2 |
2^2*3*17 |
A1(q2) |
phi2 phi8 |
[ 2 ] |
|
387 |
3 |
2^3*3*7*31 |
A2(q) |
phi1 phi5 |
[ 1, 1, 1 ] |
|
388 |
3 |
2^3*31 |
A2(q) |
phi1 phi5 |
[ 2, 1 ] |
|
389 |
3 |
2^2*31 |
A2(q) |
phi1 phi5 |
[ 3 ] |
|
390 |
3 |
2^3*3^4*11 |
2A2(q) |
phi2 phi10 |
[ 1, 1, 1 ] |
|
391 |
3 |
2^3*3^2*11 |
2A2(q) |
phi2 phi10 |
[ 2, 1 ] |
|
392 |
3 |
2^2*3*11 |
2A2(q) |
phi2 phi10 |
[ 3 ] |
|
393 |
4 |
2^3*3^3*7^2 |
A2(q) |
phi2 phi3 phi6 |
[ 1, 1, 1 ] |
|
394 |
4 |
2^3*3^2*7 |
A2(q) |
phi2 phi3 phi6 |
[ 2, 1 ] |
|
395 |
4 |
2^2*3^2*7 |
A2(q) |
phi2 phi3 phi6 |
[ 3 ] |
|
396 |
1 |
2^3*3^4*7 |
2A2(q) |
phi1 phi3 phi6 |
[ 1, 1, 1 ] |
|
397 |
1 |
2^3*3^2*7 |
2A2(q) |
phi1 phi3 phi6 |
[ 2, 1 ] |
|
398 |
1 |
2^2*3*7 |
2A2(q) |
phi1 phi3 phi6 |
[ 3 ] |
|
399 |
1 |
2^3*3^5*5 |
2A2(q) |
phi1 phi2^2 phi4 |
[ 1, 1, 1 ] |
|
400 |
1 |
2^3*3^3*5 |
2A2(q) |
phi1 phi2^2 phi4 |
[ 2, 1 ] |
|
401 |
1 |
2^2*3^2*5 |
2A2(q) |
phi1 phi2^2 phi4 |
[ 3 ] |
|
402 |
6 |
2*3^3*11 |
A1(q) |
phi2^2 phi10 |
[ 1, 1 ] |
|
403 |
6 |
2*3^2*11 |
A1(q) |
phi2^2 phi10 |
[ 2 ] |
|
404 |
3 |
2*3^2*5*7 |
A1(q) |
phi1 phi2 phi3 phi4 |
[ 1, 1 ] |
|
405 |
3 |
2*3*5*7 |
A1(q) |
phi1 phi2 phi3 phi4 |
[ 2 ] |
|
406 |
1 |
2*3^3*5 |
A1(q) |
phi1 phi2 phi4 phi6 |
[ 1, 1 ] |
|
407 |
1 |
2*3^2*5 |
A1(q) |
phi1 phi2 phi4 phi6 |
[ 2 ] |
|
408 |
3 |
2*3^3*7 |
A1(q) |
phi1 phi2 phi3 phi6 |
[ 1, 1 ] |
|
409 |
3 |
2*3^2*7 |
A1(q) |
phi1 phi2 phi3 phi6 |
[ 2 ] |
|
410 |
2 |
2*3^2*17 |
A1(q) |
phi1 phi2 phi8 |
[ 1, 1 ] |
|
411 |
2 |
2*3*17 |
A1(q) |
phi1 phi2 phi8 |
[ 2 ] |
|
412 |
4 |
2*3*5*17 |
A1(q) |
phi4 phi8 |
[ 1, 1 ] |
|
413 |
4 |
2*5*17 |
A1(q) |
phi4 phi8 |
[ 2 ] |
|
414 |
4 |
3^3*7 |
A0(q) |
phi1 phi2^2 phi3 phi6 |
[ [ 1 ], 1 ] |
|
415 |
9 |
127 |
A0(q) |
phi1 phi7 |
[ [ 1 ], 1 ] |
|
416 |
2 |
3^2*17 |
A0(q) |
phi1 phi2^2 phi8 |
[ [ 1 ], 1 ] |
|
417 |
4 |
73 |
A0(q) |
phi1 phi9 |
[ [ 1 ], 1 ] |
|
418 |
3 |
3^2*5*7 |
A0(q) |
phi1 phi2^2 phi3 phi4 |
[ [ 1 ], 1 ] |
|
419 |
1 |
3^3*5 |
A0(q) |
phi1 phi2^2 phi4 phi6 |
[ [ 1 ], 1 ] |
|
420 |
3 |
7*13 |
A0(q) |
phi1 phi3 phi12 |
[ [ 1 ], 1 ] |
|
421 |
6 |
7*31 |
A0(q) |
phi1 phi3 phi5 |
[ [ 1 ], 1 ] |
|
422 |
1 |
3^3*11 |
A0(q) |
phi2^3 phi10 |
[ [ 1 ], 1 ] |
|
423 |
1 |
3^2*7^2 |
A0(q) |
phi2 phi3^2 phi6 |
[ [ 1 ], 1 ] |
|
424 |
9 |
3*43 |
A0(q) |
phi2 phi14 |
[ [ 1 ], 1 ] |
|
425 |
4 |
3*5*17 |
A0(q) |
phi2 phi4 phi8 |
[ [ 1 ], 1 ] |
|
426 |
9 |
3^2*19 |
A0(q) |
phi2 phi18 |
[ [ 1 ], 1 ] |
|
427 |
3 |
3*31 |
A0(q) |
phi1^2 phi2 phi5 |
[ [ 1 ], 1 ] |
|
428 |
4 |
3^2*13 |
A0(q) |
phi2 phi6 phi12 |
[ [ 1 ], 1 ] |
|
429 |
2 |
3^2*11 |
A0(q) |
phi2 phi6 phi10 |
[ [ 1 ], 1 ] |
The following table lists the degrees of the complex irreducible
characters of E7(2).
There are 531 irreducible characters.