We give the following information: each row stands for a set of classes
which have representatives with the same centralizer in G. The column "#
classes" tells how many classes are in this set. The column "|C(su)(q)|,
q=2" tells the order of the centralizer of elements in these classes. The
next two columns describe the centralizer of the semisimple part s of an
element in these classes; "type of C(s)" gives the semisimple part of the
centralizer of s in G under the restricted Frobenius morphism, and
"|Z0(C(s))(q)|" gives the number of rational points in the
radical of the centralizer of s (generically, as polynomial in q (= 2), the
polynomials are factorized into cyclotomic polynomials, phiN means the
evaluation of the N-th cyclotomic polynomial at q). Finally, in column "type
of u" a label for the class of the unipotent part u is given; we don't give
precise explanations of that labeling here.
There are 1156 conjugacy classes.
| | # classes | |C(su)(q)|,
q=2 |
type of C(s) |
|Z0(C(s))(q)| | type of u |
|
1 |
1 |
2^120*3^13*5^5*7^4*11^2*13^2*17^2*19*31^2*41*43*73*127*151*241*331 |
E8(q) |
1 |
- |
|
2 |
1 |
2^120*3^11*5^2*7^3*11*13*17*19*31*43*73*127 |
E8(q) |
1 |
A1 |
|
3 |
1 |
2^114*3^8*5^3*7^2*11*13*17*31 |
E8(q) |
1 |
2A1 |
|
4 |
1 |
2^106*3^7*5^2*7^2*13*17 |
E8(q) |
1 |
3A1 |
|
5 |
1 |
2^93*3^6*5^2*7^3*13*17*31*73 |
E8(q) |
1 |
A2 |
|
6 |
1 |
2^93*3^10*5^2*7^2*11*13*17*19 |
E8(q) |
1 |
A2 |
|
7 |
1 |
2^100*3^5*5^2*7*17 |
E8(q) |
1 |
4A1 |
|
8 |
1 |
2^93*3^4*5*7^2*31 |
E8(q) |
1 |
A2+A1 |
|
9 |
1 |
2^93*3^7*5*7*11 |
E8(q) |
1 |
A2+A1 |
|
10 |
1 |
2^88*3^5*5*7 |
E8(q) |
1 |
A2+2A1 |
|
11 |
1 |
2^70*3^6*5^2*7*11*17*31 |
E8(q) |
1 |
A3 |
|
12 |
1 |
2^84*3^4*7 |
E8(q) |
1 |
A2+3A1 |
|
13 |
1 |
2^77*3^6*7^2 |
E8(q) |
1 |
2A2 |
|
14 |
1 |
2^77*3^3*5^2*7*13 |
E8(q) |
1 |
2A2 |
|
15 |
1 |
2^76*3^4*7 |
E8(q) |
1 |
2A2+A1 |
|
16 |
1 |
2^70*3^5*5*7 |
E8(q) |
1 |
A3+A1 |
|
17 |
1 |
2^67*3^6*5^2*7 |
E8(q) |
1 |
D4(a1) |
|
18 |
1 |
2^67*3^4*5*7*17 |
E8(q) |
1 |
D4(a1) |
|
19 |
1 |
2^66*3^5*7^2*13 |
E8(q) |
1 |
D4(a1) |
|
20 |
1 |
2^74*3^2*5 |
E8(q) |
1 |
2A2+2A1 |
|
21 |
1 |
2^53*3^6*5^2*7^2*13*17 |
E8(q) |
1 |
D4 |
|
22 |
1 |
2^53*3^6*5^2*7^2*13*17 |
E8(q) |
1 |
D4 |
|
23 |
1 |
2^68*3^3*5 |
E8(q) |
1 |
A3+2A1 |
|
24 |
1 |
2^67*3^4 |
E8(q) |
1 |
D4(a1)+A1 |
|
25 |
1 |
2^67*3^2*5 |
E8(q) |
1 |
D4(a1)+A1 |
|
26 |
1 |
2^66*3^3*7 |
E8(q) |
1 |
D4(a1)+A1 |
|
27 |
1 |
2^64*3^3*5 |
E8(q) |
1 |
(A3+A2)2 |
|
28 |
1 |
2^64*3^2*5 |
E8(q) |
1 |
A3+A2 |
|
29 |
1 |
2^55*3^2*5*7*31 |
E8(q) |
1 |
A4 |
|
30 |
1 |
2^55*3^5*5*11 |
E8(q) |
1 |
A4 |
|
31 |
1 |
2^62*3^2 |
E8(q) |
1 |
A3+A2+A1 |
|
32 |
1 |
2^60*3*7 |
E8(q) |
1 |
D4(a1)+A2 |
|
33 |
1 |
2^60*3^3 |
E8(q) |
1 |
D4(a1)+A2 |
|
34 |
1 |
2^53*3^4*5*7 |
E8(q) |
1 |
D4+A1 |
|
35 |
1 |
2^53*3^4*5*7 |
E8(q) |
1 |
D4+A1 |
|
36 |
1 |
2^54*3^2*5 |
E8(q) |
1 |
2A3 |
|
37 |
1 |
2^55*3*7 |
E8(q) |
1 |
A4+A1 |
|
38 |
1 |
2^55*3^4 |
E8(q) |
1 |
A4+A1 |
|
39 |
1 |
2^50*3^2*5*7 |
E8(q) |
1 |
D5(a1) |
|
40 |
1 |
2^50*3^4*5 |
E8(q) |
1 |
D5(a1) |
|
41 |
1 |
2^54*3 |
E8(q) |
1 |
A4+2A1 |
|
42 |
1 |
2^54*3^2 |
E8(q) |
1 |
A4+2A1 |
|
43 |
1 |
2^49*3^3*7 |
E8(q) |
1 |
(D4+A2)2 |
|
44 |
1 |
2^49*3^3*7 |
E8(q) |
1 |
(D4+A2)2 |
|
45 |
1 |
2^50*3^2 |
E8(q) |
1 |
A4+A2 |
|
46 |
1 |
2^50*3 |
E8(q) |
1 |
A4+A2+A1 |
|
47 |
1 |
2^48*3^2 |
E8(q) |
1 |
D5(a1)+A1 |
|
48 |
1 |
2^42*3^4*7 |
E8(q) |
1 |
A5 |
|
49 |
1 |
2^48*3 |
E8(q) |
1 |
D4+A2 |
|
50 |
1 |
2^43*3^3*7 |
E8(q) |
1 |
(A5+A1)'' |
|
51 |
1 |
2^43*3^3*7 |
E8(q) |
1 |
(A5+A1)'' |
|
52 |
1 |
2^46*3 |
E8(q) |
1 |
A4+A3 |
|
53 |
1 |
2^37*3^4*5*7 |
E8(q) |
1 |
D5 |
|
54 |
1 |
2^37*3^4*5*7 |
E8(q) |
1 |
D5 |
|
55 |
1 |
2^44*3 |
E8(q) |
1 |
D5(a1)+A2 |
|
56 |
1 |
2^42*3^2 |
E8(q) |
1 |
(A5+A1)' |
|
57 |
1 |
2^43*3 |
E8(q) |
1 |
A5+2A1 |
|
58 |
1 |
2^43*3 |
E8(q) |
1 |
A5+2A1 |
|
59 |
1 |
2^41*3^2 |
E8(q) |
1 |
D6(a2) |
|
60 |
1 |
2^41*3*5 |
E8(q) |
1 |
D6(a2) |
|
61 |
1 |
2^41*3^2 |
E8(q) |
1 |
A5+A2 |
|
62 |
1 |
2^41*3 |
E8(q) |
1 |
A5+A2 |
|
63 |
1 |
2^40*3^2 |
E8(q) |
1 |
A5+A2 |
|
64 |
1 |
2^37*3^2 |
E8(q) |
1 |
D5+A1 |
|
65 |
1 |
2^37*3^2 |
E8(q) |
1 |
D5+A1 |
|
66 |
1 |
2^43*3*5 |
E8(q) |
1 |
2A4 |
|
67 |
1 |
2^42*3 |
E8(q) |
1 |
2A4 |
|
68 |
1 |
2^43 |
E8(q) |
1 |
2A4 |
|
69 |
1 |
2^41*3 |
E8(q) |
1 |
2A4 |
|
70 |
1 |
2^41*3 |
E8(q) |
1 |
2A4 |
|
71 |
1 |
2^42 |
E8(q) |
1 |
2A4 |
|
72 |
1 |
2^40*5 |
E8(q) |
1 |
2A4 |
|
73 |
1 |
2^36*3^2 |
E8(q) |
1 |
D6(a1) |
|
74 |
1 |
2^36*3*5 |
E8(q) |
1 |
D6(a1) |
|
75 |
1 |
2^36*3^2 |
E8(q) |
1 |
D6(a1) |
|
76 |
1 |
2^36*3*5 |
E8(q) |
1 |
D6(a1) |
|
77 |
1 |
2^36*3 |
E8(q) |
1 |
A6 |
|
78 |
1 |
2^36*3^2 |
E8(q) |
1 |
A6 |
|
79 |
1 |
2^34*3 |
E8(q) |
1 |
A6+A1 |
|
80 |
1 |
2^34*3 |
E8(q) |
1 |
D6(a1)+A1 |
|
81 |
1 |
2^35*3 |
E8(q) |
1 |
(D5+A2) |
|
82 |
1 |
2^35*3 |
E8(q) |
1 |
(D5+A2) |
|
83 |
1 |
2^34 |
E8(q) |
1 |
D5+A2 |
|
84 |
1 |
2^30*3*7 |
E8(q) |
1 |
E6(a1) |
|
85 |
1 |
2^30*3^3 |
E8(q) |
1 |
E6(a1) |
|
86 |
1 |
2^27*3^2*5 |
E8(q) |
1 |
D6 |
|
87 |
1 |
2^27*3^2*5 |
E8(q) |
1 |
D6 |
|
88 |
1 |
2^32 |
E8(q) |
1 |
D7(a2) |
|
89 |
1 |
2^32*3 |
E8(q) |
1 |
D7(a2) |
|
90 |
1 |
2^25*3^3*7 |
E8(q) |
1 |
E6 |
|
91 |
1 |
2^25*3^3*7 |
E8(q) |
1 |
E6 |
|
92 |
1 |
2^28*3 |
E8(q) |
1 |
A7 |
|
93 |
1 |
2^30 |
E8(q) |
1 |
E6(a1)+A1 |
|
94 |
1 |
2^30*3 |
E8(q) |
1 |
E6(a1)+A1 |
|
95 |
1 |
2^27*3 |
E8(q) |
1 |
D6+A1 |
|
96 |
1 |
2^27*3 |
E8(q) |
1 |
D6+A1 |
|
97 |
1 |
2^29*3 |
E8(q) |
1 |
D8(a3) |
|
98 |
1 |
2^29 |
E8(q) |
1 |
D8(a3) |
|
99 |
1 |
2^28*3 |
E8(q) |
1 |
D8(a3) |
|
100 |
1 |
2^27*3 |
E8(q) |
1 |
(D7(a1))2 |
|
101 |
1 |
2^27*3 |
E8(q) |
1 |
(D7(a1))2 |
|
102 |
1 |
2^26 |
E8(q) |
1 |
D7(a1) |
|
103 |
1 |
2^25*3 |
E8(q) |
1 |
E6+A1 |
|
104 |
1 |
2^25*3 |
E8(q) |
1 |
E6+A1 |
|
105 |
1 |
2^23*3 |
E8(q) |
1 |
E7(a2) |
|
106 |
1 |
2^23*3 |
E8(q) |
1 |
E7(a2) |
|
107 |
1 |
2^25*3 |
E8(q) |
1 |
A8 |
|
108 |
1 |
2^25 |
E8(q) |
1 |
A8 |
|
109 |
1 |
2^24*3 |
E8(q) |
1 |
A8 |
|
110 |
1 |
2^24*3 |
E8(q) |
1 |
E7(a2)+A1 |
|
111 |
1 |
2^24*3 |
E8(q) |
1 |
E7(a2)+A1 |
|
112 |
1 |
2^24 |
E8(q) |
1 |
E7(a2)+A1 |
|
113 |
1 |
2^24 |
E8(q) |
1 |
E7(a2)+A1 |
|
114 |
1 |
2^23*3 |
E8(q) |
1 |
E7(a2)+A1 |
|
115 |
1 |
2^23*3 |
E8(q) |
1 |
E7(a2)+A1 |
|
116 |
1 |
2^21*3 |
E8(q) |
1 |
D7 |
|
117 |
1 |
2^21*3 |
E8(q) |
1 |
D7 |
|
118 |
1 |
2^23 |
E8(q) |
1 |
D8(a1) |
|
119 |
1 |
2^22 |
E8(q) |
1 |
D8(a1) |
|
120 |
1 |
2^22 |
E8(q) |
1 |
D8(a1) |
|
121 |
1 |
2^22 |
E8(q) |
1 |
D8(a1) |
|
122 |
1 |
2^23 |
E8(q) |
1 |
D8(a1) |
|
123 |
1 |
2^19*3 |
E8(q) |
1 |
E7(a1) |
|
124 |
1 |
2^19*3 |
E8(q) |
1 |
E7(a1) |
|
125 |
1 |
2^19 |
E8(q) |
1 |
E7(a1)+A1 |
|
126 |
1 |
2^19 |
E8(q) |
1 |
E7(a1)+A1 |
|
127 |
1 |
2^17 |
E8(q) |
1 |
D8 |
|
128 |
1 |
2^17 |
E8(q) |
1 |
D8 |
|
129 |
1 |
2^16*3 |
E8(q) |
1 |
E7 |
|
130 |
1 |
2^16*3 |
E8(q) |
1 |
E7 |
|
131 |
1 |
2^16*3 |
E8(q) |
1 |
E7 |
|
132 |
1 |
2^16*3 |
E8(q) |
1 |
E7 |
|
133 |
1 |
2^16 |
E8(q) |
1 |
E7+A1 |
|
134 |
1 |
2^16 |
E8(q) |
1 |
E7+A1 |
|
135 |
1 |
2^16 |
E8(q) |
1 |
E7+A1 |
|
136 |
1 |
2^16 |
E8(q) |
1 |
E7+A1 |
|
137 |
1 |
2^13 |
E8(q) |
1 |
E8(a2) |
|
138 |
1 |
2^13 |
E8(q) |
1 |
E8(a2) |
|
139 |
1 |
2^12 |
E8(q) |
1 |
E8(a1) |
|
140 |
1 |
2^12 |
E8(q) |
1 |
E8(a1) |
|
141 |
1 |
2^12 |
E8(q) |
1 |
E8(a1) |
|
142 |
1 |
2^12 |
E8(q) |
1 |
E8(a1) |
|
143 |
1 |
2^10 |
E8(q) |
1 |
E8 |
|
144 |
1 |
2^10 |
E8(q) |
1 |
E8 |
|
145 |
1 |
2^10 |
E8(q) |
1 |
E8 |
|
146 |
1 |
2^10 |
E8(q) |
1 |
E8 |
|
147 |
1 |
2^39*3^13*5^2*7^2*11*13*17*19 |
2E6(q) + 2A2(q) |
1 |
[ " ", [ 1, 1, 1 ] ] |
|
148 |
1 |
2^39*3^11*5^2*7^2*11*13*17*19 |
2E6(q) + 2A2(q) |
1 |
[ " ", [ 2, 1 ] ] |
|
149 |
1 |
2^38*3^10*5^2*7^2*11*13*17*19 |
2E6(q) + 2A2(q) |
1 |
[ " ", [ 3 ] ] |
|
150 |
1 |
2^39*3^10*5*7*11 |
2E6(q) + 2A2(q) |
1 |
[ "A_1", [ 1, 1, 1 ] ] |
|
151 |
1 |
2^39*3^8*5*7*11 |
2E6(q) + 2A2(q) |
1 |
[ "A_1", [ 2, 1 ] ] |
|
152 |
1 |
2^38*3^7*5*7*11 |
2E6(q) + 2A2(q) |
1 |
[ "A_1", [ 3 ] ] |
|
153 |
1 |
2^36*3^8*5*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_1", [ 1, 1, 1 ] ] |
|
154 |
1 |
2^36*3^6*5*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_1", [ 2, 1 ] ] |
|
155 |
1 |
2^35*3^5*5*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_1", [ 3 ] ] |
|
156 |
1 |
2^34*3^7 |
2E6(q) + 2A2(q) |
1 |
[ "3A_1", [ 1, 1, 1 ] ] |
|
157 |
1 |
2^34*3^5 |
2E6(q) + 2A2(q) |
1 |
[ "3A_1", [ 2, 1 ] ] |
|
158 |
1 |
2^33*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "3A_1", [ 3 ] ] |
|
159 |
1 |
2^30*3^9 |
2E6(q) + 2A2(q) |
1 |
[ "A_2", [ 1, 1, 1 ] ] |
|
160 |
1 |
2^30*3^6*5*7 |
2E6(q) + 2A2(q) |
1 |
[ "A_2", [ 1, 1, 1 ] ] |
|
161 |
1 |
2^30*3^7 |
2E6(q) + 2A2(q) |
1 |
[ "A_2", [ 2, 1 ] ] |
|
162 |
1 |
2^30*3^4*5*7 |
2E6(q) + 2A2(q) |
1 |
[ "A_2", [ 2, 1 ] ] |
|
163 |
1 |
2^29*3^6 |
2E6(q) + 2A2(q) |
1 |
[ "A_2", [ 3 ] ] |
|
164 |
1 |
2^29*3^3*5*7 |
2E6(q) + 2A2(q) |
1 |
[ "A_2", [ 3 ] ] |
|
165 |
1 |
2^29*3^7 |
2E6(q) + 2A2(q) |
1 |
[ "A_2+A_1", [ 1, 1, 1 ] ] |
|
166 |
1 |
2^29*3^5 |
2E6(q) + 2A2(q) |
1 |
[ "A_2+A_1", [ 2, 1 ] ] |
|
167 |
1 |
2^28*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "A_2+A_1", [ 3 ] ] |
|
168 |
1 |
2^25*3^6*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2", [ 1, 1, 1 ] ] |
|
169 |
1 |
2^25*3^4*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2", [ 2, 1 ] ] |
|
170 |
1 |
2^24*3^4*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2", [ 3 ] ] |
|
171 |
1 |
2^24*3^4*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2", [ 3 ] ] |
|
172 |
1 |
2^24*3^4*7 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2", [ 3 ] ] |
|
173 |
1 |
2^28*3^5 |
2E6(q) + 2A2(q) |
1 |
[ "A_2+2A_1", [ 1, 1, 1 ] ] |
|
174 |
1 |
2^28*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "A_2+2A_1", [ 2, 1 ] ] |
|
175 |
1 |
2^27*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_2+2A_1", [ 3 ] ] |
|
176 |
1 |
2^22*3^6*5 |
2E6(q) + 2A2(q) |
1 |
[ "A_3", [ 1, 1, 1 ] ] |
|
177 |
1 |
2^22*3^4*5 |
2E6(q) + 2A2(q) |
1 |
[ "A_3", [ 2, 1 ] ] |
|
178 |
1 |
2^21*3^3*5 |
2E6(q) + 2A2(q) |
1 |
[ "A_3", [ 3 ] ] |
|
179 |
1 |
2^25*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2+A_1", [ 1, 1, 1 ] ] |
|
180 |
1 |
2^25*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2+A_1", [ 2, 1 ] ] |
|
181 |
1 |
2^24*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2+A_1", [ 3 ] ] |
|
182 |
1 |
2^24*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2+A_1", [ 3 ] ] |
|
183 |
1 |
2^24*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "2A_2+A_1", [ 3 ] ] |
|
184 |
1 |
2^22*3^5 |
2E6(q) + 2A2(q) |
1 |
[ "A_3+A_1", [ 1, 1, 1 ] ] |
|
185 |
1 |
2^22*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "A_3+A_1", [ 2, 1 ] ] |
|
186 |
1 |
2^21*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_3+A_1", [ 3 ] ] |
|
187 |
1 |
2^22*3^6 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 1, 1, 1 ] ] |
|
188 |
1 |
2^22*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 1, 1, 1 ] ] |
|
189 |
1 |
2^21*3^5 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 1, 1, 1 ] ] |
|
190 |
1 |
2^22*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 2, 1 ] ] |
|
191 |
1 |
2^22*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 2, 1 ] ] |
|
192 |
1 |
2^21*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 2, 1 ] ] |
|
193 |
1 |
2^21*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 3 ] ] |
|
194 |
1 |
2^21*3 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 3 ] ] |
|
195 |
1 |
2^20*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "D_4(a_1)", [ 3 ] ] |
|
196 |
1 |
2^18*3^5 |
2E6(q) + 2A2(q) |
1 |
[ "A_4", [ 1, 1, 1 ] ] |
|
197 |
1 |
2^18*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "A_4", [ 2, 1 ] ] |
|
198 |
1 |
2^17*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_4", [ 3 ] ] |
|
199 |
1 |
2^17*3^6 |
2E6(q) + 2A2(q) |
1 |
[ "D_4", [ 1, 1, 1 ] ] |
|
200 |
1 |
2^17*3^6 |
2E6(q) + 2A2(q) |
1 |
[ "D_4", [ 1, 1, 1 ] ] |
|
201 |
1 |
2^17*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "D_4", [ 2, 1 ] ] |
|
202 |
1 |
2^17*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "D_4", [ 2, 1 ] ] |
|
203 |
1 |
2^16*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "D_4", [ 3 ] ] |
|
204 |
1 |
2^16*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "D_4", [ 3 ] ] |
|
205 |
1 |
2^18*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "A_4+A_1", [ 1, 1, 1 ] ] |
|
206 |
1 |
2^18*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_4+A_1", [ 2, 1 ] ] |
|
207 |
1 |
2^17*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_4+A_1", [ 3 ] ] |
|
208 |
1 |
2^16*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "D_5(a_1)", [ 1, 1, 1 ] ] |
|
209 |
1 |
2^16*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "D_5(a_1)", [ 2, 1 ] ] |
|
210 |
1 |
2^15*3 |
2E6(q) + 2A2(q) |
1 |
[ "D_5(a_1)", [ 3 ] ] |
|
211 |
1 |
2^15*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "A_5", [ 1, 1, 1 ] ] |
|
212 |
1 |
2^15*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_5", [ 2, 1 ] ] |
|
213 |
1 |
2^14*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_5", [ 3 ] ] |
|
214 |
1 |
2^14*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_5", [ 3 ] ] |
|
215 |
1 |
2^14*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "A_5", [ 3 ] ] |
|
216 |
1 |
2^16*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 1, 1, 1 ] ] |
|
217 |
1 |
2^16*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 1, 1, 1 ] ] |
|
218 |
1 |
2^16*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 2, 1 ] ] |
|
219 |
1 |
2^16*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 2, 1 ] ] |
|
220 |
1 |
2^15*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 3 ] ] |
|
221 |
1 |
2^15*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 3 ] ] |
|
222 |
1 |
2^15*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 3 ] ] |
|
223 |
1 |
2^15*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 3 ] ] |
|
224 |
1 |
2^15*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 3 ] ] |
|
225 |
1 |
2^15*3 |
2E6(q) + 2A2(q) |
1 |
[ "A_5+A_1", [ 3 ] ] |
|
226 |
1 |
2^13*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "D_5", [ 1, 1, 1 ] ] |
|
227 |
1 |
2^13*3^4 |
2E6(q) + 2A2(q) |
1 |
[ "D_5", [ 1, 1, 1 ] ] |
|
228 |
1 |
2^13*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "D_5", [ 2, 1 ] ] |
|
229 |
1 |
2^13*3^2 |
2E6(q) + 2A2(q) |
1 |
[ "D_5", [ 2, 1 ] ] |
|
230 |
1 |
2^12*3 |
2E6(q) + 2A2(q) |
1 |
[ "D_5", [ 3 ] ] |
|
231 |
1 |
2^12*3 |
2E6(q) + 2A2(q) |
1 |
[ "D_5", [ 3 ] ] |
|
232 |
1 |
2^11*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6(a_1)", [ 1, 1, 1 ] ] |
|
233 |
1 |
2^11*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6(a_1)", [ 2, 1 ] ] |
|
234 |
1 |
2^10*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6(a_1)", [ 3 ] ] |
|
235 |
1 |
2^10*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6(a_1)", [ 3 ] ] |
|
236 |
1 |
2^10*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6(a_1)", [ 3 ] ] |
|
237 |
1 |
2^10*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 1, 1, 1 ] ] |
|
238 |
1 |
2^10*3^3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 1, 1, 1 ] ] |
|
239 |
1 |
2^10*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 2, 1 ] ] |
|
240 |
1 |
2^10*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 2, 1 ] ] |
|
241 |
1 |
2^9*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 3 ] ] |
|
242 |
1 |
2^9*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 3 ] ] |
|
243 |
1 |
2^9*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 3 ] ] |
|
244 |
1 |
2^9*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 3 ] ] |
|
245 |
1 |
2^9*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 3 ] ] |
|
246 |
1 |
2^9*3 |
2E6(q) + 2A2(q) |
1 |
[ "E_6", [ 3 ] ] |
|
247 |
1 |
2^20*3^2*5^5*13*17*41 |
2A4(q2) |
1 |
[ 1, 1, 1, 1, 1 ] |
|
248 |
1 |
2^20*3*5^3*13 |
2A4(q2) |
1 |
[ 2, 1, 1, 1 ] |
|
249 |
1 |
2^18*3*5^2 |
2A4(q2) |
1 |
[ 2, 2, 1 ] |
|
250 |
1 |
2^14*3*5^2 |
2A4(q2) |
1 |
[ 3, 1, 1 ] |
|
251 |
1 |
2^14*5 |
2A4(q2) |
1 |
[ 3, 2 ] |
|
252 |
1 |
2^10*5 |
2A4(q2) |
1 |
[ 4, 1 ] |
|
253 |
1 |
2^8*5 |
2A4(q2) |
1 |
[ 5 ] |
|
254 |
1 |
2^8*5 |
2A4(q2) |
1 |
[ 5 ] |
|
255 |
1 |
2^8*5 |
2A4(q2) |
1 |
[ 5 ] |
|
256 |
1 |
2^8*5 |
2A4(q2) |
1 |
[ 5 ] |
|
257 |
1 |
2^8*5 |
2A4(q2) |
1 |
[ 5 ] |
|
258 |
1 |
2^36*3^12*5^2*7*11*17*19*43 |
2A8(q) |
1 |
[ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] |
|
259 |
1 |
2^36*3^9*5*7*11*43 |
2A8(q) |
1 |
[ 2, 1, 1, 1, 1, 1, 1, 1 ] |
|
260 |
1 |
2^35*3^7*5*11 |
2A8(q) |
1 |
[ 2, 2, 1, 1, 1, 1, 1 ] |
|
261 |
1 |
2^29*3^8*5*7*11 |
2A8(q) |
1 |
[ 3, 1, 1, 1, 1, 1, 1 ] |
|
262 |
1 |
2^33*3^7 |
2A8(q) |
1 |
[ 2, 2, 2, 1, 1, 1 ] |
|
263 |
1 |
2^30*3^5*5 |
2A8(q) |
1 |
[ 2, 2, 2, 2, 1 ] |
|
264 |
1 |
2^29*3^6*5 |
2A8(q) |
1 |
[ 3, 2, 1, 1, 1, 1 ] |
|
265 |
1 |
2^23*3^6*5*11 |
2A8(q) |
1 |
[ 4, 1, 1, 1, 1, 1 ] |
|
266 |
1 |
2^28*3^4 |
2A8(q) |
1 |
[ 3, 2, 2, 1, 1 ] |
|
267 |
1 |
2^26*3^4 |
2A8(q) |
1 |
[ 3, 2, 2, 2 ] |
|
268 |
1 |
2^24*3^5 |
2A8(q) |
1 |
[ 3, 3, 1, 1, 1 ] |
|
269 |
1 |
2^23*3^5 |
2A8(q) |
1 |
[ 4, 2, 1, 1, 1 ] |
|
270 |
1 |
2^24*3^3 |
2A8(q) |
1 |
[ 3, 3, 2, 1 ] |
|
271 |
1 |
2^18*3^5*5 |
2A8(q) |
1 |
[ 5, 1, 1, 1, 1 ] |
|
272 |
1 |
2^21*3^4 |
2A8(q) |
1 |
[ 3, 3, 3 ] |
|
273 |
1 |
2^21*3^4 |
2A8(q) |
1 |
[ 3, 3, 3 ] |
|
274 |
1 |
2^21*3^4 |
2A8(q) |
1 |
[ 3, 3, 3 ] |
|
275 |
1 |
2^22*3^3 |
2A8(q) |
1 |
[ 4, 2, 2, 1 ] |
|
276 |
1 |
2^20*3^3 |
2A8(q) |
1 |
[ 4, 3, 1, 1 ] |
|
277 |
1 |
2^20*3^2 |
2A8(q) |
1 |
[ 4, 3, 2 ] |
|
278 |
1 |
2^18*3^3 |
2A8(q) |
1 |
[ 5, 2, 1, 1 ] |
|
279 |
1 |
2^17*3^2 |
2A8(q) |
1 |
[ 4, 4, 1 ] |
|
280 |
1 |
2^17*3^2 |
2A8(q) |
1 |
[ 5, 2, 2 ] |
|
281 |
1 |
2^14*3^4 |
2A8(q) |
1 |
[ 6, 1, 1, 1 ] |
|
282 |
1 |
2^16*3^2 |
2A8(q) |
1 |
[ 5, 3, 1 ] |
|
283 |
1 |
2^15*3 |
2A8(q) |
1 |
[ 5, 4 ] |
|
284 |
1 |
2^14*3^2 |
2A8(q) |
1 |
[ 6, 2, 1 ] |
|
285 |
1 |
2^13*3^2 |
2A8(q) |
1 |
[ 6, 3 ] |
|
286 |
1 |
2^13*3^2 |
2A8(q) |
1 |
[ 6, 3 ] |
|
287 |
1 |
2^13*3^2 |
2A8(q) |
1 |
[ 6, 3 ] |
|
288 |
1 |
2^11*3^2 |
2A8(q) |
1 |
[ 7, 1, 1 ] |
|
289 |
1 |
2^11*3 |
2A8(q) |
1 |
[ 7, 2 ] |
|
290 |
1 |
2^9*3 |
2A8(q) |
1 |
[ 8, 1 ] |
|
291 |
1 |
2^8*3 |
2A8(q) |
1 |
[ 9 ] |
|
292 |
1 |
2^8*3 |
2A8(q) |
1 |
[ 9 ] |
|
293 |
1 |
2^8*3 |
2A8(q) |
1 |
[ 9 ] |
|
294 |
1 |
2^63*3^12*5^2*7^3*11*13*17*19*31*43*73*127 |
E7(q) |
phi2 |
- |
|
295 |
1 |
2^63*3^9*5^2*7^2*11*17*31 |
E7(q) |
phi2 |
A1 |
|
296 |
1 |
2^59*3^7*5^2*7*17 |
E7(q) |
phi2 |
2A1 |
|
297 |
1 |
2^51*3^7*5^2*7^2*13*17 |
E7(q) |
phi2 |
3A1'' |
|
298 |
1 |
2^55*3^6*5*7 |
E7(q) |
phi2 |
3A1' |
|
299 |
1 |
2^48*3^5*5*7^2*31 |
E7(q) |
phi2 |
A2 |
|
300 |
1 |
2^48*3^8*5*7*11 |
E7(q) |
phi2 |
A2 |
|
301 |
1 |
2^51*3^5*5*7 |
E7(q) |
phi2 |
4A1 |
|
302 |
1 |
2^48*3^3*5*7 |
E7(q) |
phi2 |
A2+A1 |
|
303 |
1 |
2^48*3^6*5 |
E7(q) |
phi2 |
A2+A1 |
|
304 |
1 |
2^45*3^4 |
E7(q) |
phi2 |
A2+2A1 |
|
305 |
1 |
2^41*3^4*7 |
E7(q) |
phi2 |
A2+3A1 |
|
306 |
1 |
2^39*3^5*7 |
E7(q) |
phi2 |
2A2 |
|
307 |
1 |
2^35*3^6*5*7 |
E7(q) |
phi2 |
A3 |
|
308 |
1 |
2^35*3^5*5*7 |
E7(q) |
phi2 |
(A3+A1)'' |
|
309 |
1 |
2^39*3^3 |
E7(q) |
phi2 |
2A2+A1 |
|
310 |
1 |
2^35*3^4 |
E7(q) |
phi2 |
(A3+A1)' |
|
311 |
1 |
2^34*3^5 |
E7(q) |
phi2 |
D4(a1) |
|
312 |
1 |
2^34*3^3*5 |
E7(q) |
phi2 |
D4(a1) |
|
313 |
1 |
2^33*3^4*7 |
E7(q) |
phi2 |
D4(a1) |
|
314 |
1 |
2^35*3^3 |
E7(q) |
phi2 |
A3+2A1 |
|
315 |
1 |
2^34*3^3 |
E7(q) |
phi2 |
D4(a1)+A1 |
|
316 |
1 |
2^34*3^2*5 |
E7(q) |
phi2 |
D4(a1)+A1 |
|
317 |
1 |
2^26*3^5*5*7 |
E7(q) |
phi2 |
D4 |
|
318 |
1 |
2^26*3^5*5*7 |
E7(q) |
phi2 |
D4 |
|
319 |
1 |
2^33*3^3 |
E7(q) |
phi2 |
(A3+A2)2 |
|
320 |
1 |
2^33*3^2 |
E7(q) |
phi2 |
A3+A2 |
|
321 |
1 |
2^31*3^2 |
E7(q) |
phi2 |
A3+A2+A1 |
|
322 |
1 |
2^28*3^2*7 |
E7(q) |
phi2 |
A4 |
|
323 |
1 |
2^28*3^5 |
E7(q) |
phi2 |
A4 |
|
324 |
1 |
2^26*3^3*5 |
E7(q) |
phi2 |
D4+A1 |
|
325 |
1 |
2^26*3^3*5 |
E7(q) |
phi2 |
D4+A1 |
|
326 |
1 |
2^23*3^4*7 |
E7(q) |
phi2 |
A5'' |
|
327 |
1 |
2^28*3 |
E7(q) |
phi2 |
A4+A1 |
|
328 |
1 |
2^28*3^3 |
E7(q) |
phi2 |
A4+A1 |
|
329 |
1 |
2^25*3^2 |
E7(q) |
phi2 |
A4+A2 |
|
330 |
1 |
2^25*3^2 |
E7(q) |
phi2 |
D5(a1) |
|
331 |
1 |
2^25*3^3 |
E7(q) |
phi2 |
D5(a1) |
|
332 |
1 |
2^23*3^2 |
E7(q) |
phi2 |
D5(a1)+A1 |
|
333 |
1 |
2^21*3^3 |
E7(q) |
phi2 |
A5' |
|
334 |
1 |
2^23*3^2 |
E7(q) |
phi2 |
(A5+A1)'' |
|
335 |
1 |
2^21*3^2 |
E7(q) |
phi2 |
D6(a2) |
|
336 |
1 |
2^22*3^2 |
E7(q) |
phi2 |
(A5+A1)' |
|
337 |
1 |
2^22*3^2 |
E7(q) |
phi2 |
(A5+A1)' |
|
338 |
1 |
2^18*3^3 |
E7(q) |
phi2 |
D5 |
|
339 |
1 |
2^18*3^3 |
E7(q) |
phi2 |
D5 |
|
340 |
1 |
2^22*3^2 |
E7(q) |
phi2 |
D6(a2)+A1 |
|
341 |
1 |
2^22*3 |
E7(q) |
phi2 |
D6(a2)+A1 |
|
342 |
1 |
2^21*3^2 |
E7(q) |
phi2 |
D6(a2)+A1 |
|
343 |
1 |
2^18*3^2 |
E7(q) |
phi2 |
D5+A1 |
|
344 |
1 |
2^18*3^2 |
E7(q) |
phi2 |
D5+A1 |
|
345 |
1 |
2^18*3^2 |
E7(q) |
phi2 |
D6(a1) |
|
346 |
1 |
2^18*3^2 |
E7(q) |
phi2 |
D6(a1) |
|
347 |
1 |
2^19*3 |
E7(q) |
phi2 |
A6 |
|
348 |
1 |
2^19*3^2 |
E7(q) |
phi2 |
A6 |
|
349 |
1 |
2^17*3 |
E7(q) |
phi2 |
D6(a1)+A1 |
|
350 |
1 |
2^14*3^2 |
E7(q) |
phi2 |
D6 |
|
351 |
1 |
2^14*3^2 |
E7(q) |
phi2 |
D6 |
|
352 |
1 |
2^15*3 |
E7(q) |
phi2 |
E6(a1) |
|
353 |
1 |
2^15*3^2 |
E7(q) |
phi2 |
E6(a1) |
|
354 |
1 |
2^12*3^2 |
E7(q) |
phi2 |
E6 |
|
355 |
1 |
2^12*3^2 |
E7(q) |
phi2 |
E6 |
|
356 |
1 |
2^14*3 |
E7(q) |
phi2 |
D6+A1 |
|
357 |
1 |
2^14*3 |
E7(q) |
phi2 |
D6+A1 |
|
358 |
1 |
2^12*3 |
E7(q) |
phi2 |
E7(a2) |
|
359 |
1 |
2^12*3 |
E7(q) |
phi2 |
E7(a2) |
|
360 |
1 |
2^10*3 |
E7(q) |
phi2 |
E7(a1) |
|
361 |
1 |
2^10*3 |
E7(q) |
phi2 |
E7(a1) |
|
362 |
1 |
2^9*3 |
E7(q) |
phi2 |
E7 |
|
363 |
1 |
2^9*3 |
E7(q) |
phi2 |
E7 |
|
364 |
1 |
2^9*3 |
E7(q) |
phi2 |
E7 |
|
365 |
1 |
2^9*3 |
E7(q) |
phi2 |
E7 |
|
366 |
1 |
2^10*3^7*7*19 |
2A2(q3) + A1(q) |
phi2 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
|
367 |
1 |
2^10*3^6*7*19 |
2A2(q3) + A1(q) |
phi2 |
[ [ 1, 1, 1 ], [ 2 ] ] |
|
368 |
1 |
2^10*3^4 |
2A2(q3) + A1(q) |
phi2 |
[ [ 2, 1 ], [ 1, 1 ] ] |
|
369 |
1 |
2^10*3^3 |
2A2(q3) + A1(q) |
phi2 |
[ [ 2, 1 ], [ 2 ] ] |
|
370 |
1 |
2^7*3^3 |
2A2(q3) + A1(q) |
phi2 |
[ [ 3 ], [ 1, 1 ] ] |
|
371 |
1 |
2^7*3^3 |
2A2(q3) + A1(q) |
phi2 |
[ [ 3 ], [ 1, 1 ] ] |
|
372 |
1 |
2^7*3^3 |
2A2(q3) + A1(q) |
phi2 |
[ [ 3 ], [ 1, 1 ] ] |
|
373 |
1 |
2^7*3^2 |
2A2(q3) + A1(q) |
phi2 |
[ [ 3 ], [ 2 ] ] |
|
374 |
1 |
2^7*3^2 |
2A2(q3) + A1(q) |
phi2 |
[ [ 3 ], [ 2 ] ] |
|
375 |
1 |
2^7*3^2 |
2A2(q3) + A1(q) |
phi2 |
[ [ 3 ], [ 2 ] ] |
|
376 |
1 |
2^42*3^10*5^3*7^2*11*13*17*31*43 |
2D7(q) |
phi2 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
377 |
1 |
2^42*3^8*5^2*7*11*17 |
2D7(q) |
phi2 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
378 |
1 |
2^37*3^7*5^2*7*11*17*31 |
2D7(q) |
phi2 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
379 |
1 |
2^40*3^7*5^2 |
2D7(q) |
phi2 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
380 |
1 |
2^37*3^6*5*7 |
2D7(q) |
phi2 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
381 |
1 |
2^36*3^6*5*7 |
2D7(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2, 1, 1 ], [ -1, 0 ] ] |
|
382 |
1 |
2^33*3^7*5^2*7 |
2D7(q) |
phi2 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
383 |
1 |
2^33*3^5*5*7*17 |
2D7(q) |
phi2 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
384 |
1 |
2^27*3^6*5^2*7*17 |
2D7(q) |
phi2 |
[ [ 4, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
385 |
1 |
2^35*3^4*5 |
2D7(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2, 1, 1 ], [ -1, 1 ] ] |
|
386 |
1 |
2^33*3^5 |
2D7(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1, 1, 1 ], [ -1, 0, -1 ] ] |
|
387 |
1 |
2^33*3^3*5 |
2D7(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1, 1, 1 ], [ -1, 0, -1 ] ] |
|
388 |
1 |
2^29*3^4*5 |
2D7(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1, 1, 1 ], [ -1, 1, -1 ] ] |
|
389 |
1 |
2^30*3^4*5 |
2D7(q) |
phi2 |
[ [ 3, 3, 2, 2, 2, 2 ], [ -1, 0, -1 ] ] |
|
390 |
1 |
2^27*3^4*5 |
2D7(q) |
phi2 |
[ [ 4, 2, 2, 2, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
391 |
1 |
2^24*3^6*5 |
2D7(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1, 0 ] ] |
|
392 |
1 |
2^29*3^3 |
2D7(q) |
phi2 |
[ [ 3, 3, 2, 2, 2, 2 ], [ -1, 1, -1 ] ] |
|
393 |
1 |
2^25*3^3*5*7 |
2D7(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
394 |
1 |
2^25*3^5*5 |
2D7(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
395 |
1 |
2^27*3^2*5 |
2D7(q) |
phi2 |
[ [ 3, 3, 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
396 |
1 |
2^27*3^4 |
2D7(q) |
phi2 |
[ [ 3, 3, 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
397 |
1 |
2^25*3^3*5 |
2D7(q) |
phi2 |
[ [ 4, 2, 2, 2, 2, 2 ], [ -1, 1, -1, 1 ] ] |
|
398 |
1 |
2^20*3^5*5*7 |
2D7(q) |
phi2 |
[ [ 6, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
399 |
1 |
2^20*3^5*5*7 |
2D7(q) |
phi2 |
[ [ 6, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
400 |
1 |
2^24*3^4 |
2D7(q) |
phi2 |
[ [ 4, 4, 2, 2, 1, 1 ], [ -1, 0, -1, 0 ] ] |
|
401 |
1 |
2^23*3^3 |
2D7(q) |
phi2 |
[ [ 4, 3, 3, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
402 |
1 |
2^25*3^2 |
2D7(q) |
phi2 |
[ [ 4, 4, 2, 2, 1, 1 ], [ -1, 0, -1, 1 ] ] |
|
403 |
1 |
2^25*3^3 |
2D7(q) |
phi2 |
[ [ 4, 4, 2, 2, 1, 1 ], [ -1, 0, -1, 1 ] ] |
|
404 |
1 |
2^23*3^3 |
2D7(q) |
phi2 |
[ [ 4, 4, 2, 2, 1, 1 ], [ -1, 1, -1, 0 ] ] |
|
405 |
1 |
2^23*3^2 |
2D7(q) |
phi2 |
[ [ 4, 4, 2, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
406 |
1 |
2^22*3^3 |
2D7(q) |
phi2 |
[ [ 4, 4, 3, 3 ], [ -1, -1, -1, 0 ] ] |
|
407 |
1 |
2^21*3^2 |
2D7(q) |
phi2 |
[ [ 4, 4, 3, 3 ], [ -1, -1, -1, 1 ] ] |
|
408 |
1 |
2^19*3^4 |
2D7(q) |
phi2 |
[ [ 5, 5, 1, 1, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
|
409 |
1 |
2^19*3^2*5 |
2D7(q) |
phi2 |
[ [ 5, 5, 1, 1, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
|
410 |
1 |
2^20*3^3 |
2D7(q) |
phi2 |
[ [ 6, 2, 2, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
411 |
1 |
2^20*3^3 |
2D7(q) |
phi2 |
[ [ 6, 2, 2, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
412 |
1 |
2^19*3^2 |
2D7(q) |
phi2 |
[ [ 4, 4, 4, 2 ], [ -1, 1, -1, 1 ] ] |
|
413 |
1 |
2^18*3^3 |
2D7(q) |
phi2 |
[ [ 5, 5, 2, 2 ], [ -1, 0, -1, -1, -1 ] ] |
|
414 |
1 |
2^18*3^3 |
2D7(q) |
phi2 |
[ [ 6, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
415 |
1 |
2^18*3^2*5 |
2D7(q) |
phi2 |
[ [ 6, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
416 |
1 |
2^19*3^2 |
2D7(q) |
phi2 |
[ [ 5, 5, 2, 2 ], [ -1, 1, -1, -1, -1 ] ] |
|
417 |
1 |
2^19*3 |
2D7(q) |
phi2 |
[ [ 5, 5, 2, 2 ], [ -1, 1, -1, -1, -1 ] ] |
|
418 |
1 |
2^18*3^2 |
2D7(q) |
phi2 |
[ [ 6, 3, 3, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
419 |
1 |
2^18*3^2 |
2D7(q) |
phi2 |
[ [ 6, 3, 3, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
420 |
1 |
2^17*3^2 |
2D7(q) |
phi2 |
[ [ 6, 4, 2, 2 ], [ -1, 0, -1, 1, -1, 1 ] ] |
|
421 |
1 |
2^14*3^3*5 |
2D7(q) |
phi2 |
[ [ 8, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
422 |
1 |
2^14*3^3*5 |
2D7(q) |
phi2 |
[ [ 8, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
423 |
1 |
2^17*3 |
2D7(q) |
phi2 |
[ [ 6, 4, 2, 2 ], [ -1, 1, -1, 1, -1, 1 ] ] |
|
424 |
1 |
2^14*3^3 |
2D7(q) |
phi2 |
[ [ 6, 6, 1, 1 ], [ -1, -1, -1, -1, -1, 0 ] ] |
|
425 |
1 |
2^15*3 |
2D7(q) |
phi2 |
[ [ 6, 6, 1, 1 ], [ -1, -1, -1, -1, -1, 1 ] ] |
|
426 |
1 |
2^15*3^2 |
2D7(q) |
phi2 |
[ [ 6, 6, 1, 1 ], [ -1, -1, -1, -1, -1, 1 ] ] |
|
427 |
1 |
2^14*3^2 |
2D7(q) |
phi2 |
[ [ 8, 2, 2, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
428 |
1 |
2^14*3^2 |
2D7(q) |
phi2 |
[ [ 8, 2, 2, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
429 |
1 |
2^12*3^2 |
2D7(q) |
phi2 |
[ [ 7, 7 ], [ -1, -1, -1, -1, -1, -1, -1 ] ] |
|
430 |
1 |
2^14*3 |
2D7(q) |
phi2 |
[ [ 8, 4, 1, 1 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
431 |
1 |
2^14*3^2 |
2D7(q) |
phi2 |
[ [ 8, 4, 1, 1 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
432 |
1 |
2^14*3^2 |
2D7(q) |
phi2 |
[ [ 8, 4, 1, 1 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
433 |
1 |
2^14*3 |
2D7(q) |
phi2 |
[ [ 8, 4, 1, 1 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
434 |
1 |
2^11*3 |
2D7(q) |
phi2 |
[ [ 8, 6 ], [ -1, -1, -1, -1, -1, 1, -1, 1 ] ] |
|
435 |
1 |
2^10*3^2 |
2D7(q) |
phi2 |
[ [ 10, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
436 |
1 |
2^10*3^2 |
2D7(q) |
phi2 |
[ [ 10, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
437 |
1 |
2^10*3 |
2D7(q) |
phi2 |
[ [ 10, 4 ], [ -1, -1, -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
438 |
1 |
2^10*3 |
2D7(q) |
phi2 |
[ [ 10, 4 ], [ -1, -1, -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
439 |
1 |
2^8*3 |
2D7(q) |
phi2 |
[ [ 12, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
440 |
1 |
2^8*3 |
2D7(q) |
phi2 |
[ [ 12, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
441 |
1 |
2^36*3^6*5^2*7^4*13*17*31*73 |
E6(q) |
phi3 |
- |
|
442 |
1 |
2^36*3^4*5*7^3*31 |
E6(q) |
phi3 |
A1 |
|
443 |
1 |
2^33*3^4*5*7^2 |
E6(q) |
phi3 |
2A1 |
|
444 |
1 |
2^31*3^2*7^2 |
E6(q) |
phi3 |
3A1 |
|
445 |
1 |
2^27*3^2*7^3 |
E6(q) |
phi3 |
A2 |
|
446 |
1 |
2^27*3^3*5*7^2 |
E6(q) |
phi3 |
A2 |
|
447 |
1 |
2^26*3*7^2 |
E6(q) |
phi3 |
A2+A1 |
|
448 |
1 |
2^22*3^3*7^2 |
E6(q) |
phi3 |
2A2 |
|
449 |
1 |
2^25*3*7 |
E6(q) |
phi3 |
A2+2A1 |
|
450 |
1 |
2^19*3^2*5*7 |
E6(q) |
phi3 |
A3 |
|
451 |
1 |
2^22*3*7 |
E6(q) |
phi3 |
2A2+A1 |
|
452 |
1 |
2^19*3*7 |
E6(q) |
phi3 |
A3+A1 |
|
453 |
1 |
2^19*3*7 |
E6(q) |
phi3 |
D4(a1) |
|
454 |
1 |
2^19*3*7 |
E6(q) |
phi3 |
D4(a1) |
|
455 |
1 |
2^18*3*7^2 |
E6(q) |
phi3 |
D4(a1) |
|
456 |
1 |
2^15*3*7 |
E6(q) |
phi3 |
A4 |
|
457 |
1 |
2^14*3*7^2 |
E6(q) |
phi3 |
D4 |
|
458 |
1 |
2^14*3*7^2 |
E6(q) |
phi3 |
D4 |
|
459 |
1 |
2^15*7 |
E6(q) |
phi3 |
A4+A1 |
|
460 |
1 |
2^13*7 |
E6(q) |
phi3 |
D5(a1) |
|
461 |
1 |
2^12*3*7 |
E6(q) |
phi3 |
A5 |
|
462 |
1 |
2^13*7 |
E6(q) |
phi3 |
A5+A1 |
|
463 |
1 |
2^13*7 |
E6(q) |
phi3 |
A5+A1 |
|
464 |
1 |
2^10*7 |
E6(q) |
phi3 |
D5 |
|
465 |
1 |
2^10*7 |
E6(q) |
phi3 |
D5 |
|
466 |
1 |
2^8*7 |
E6(q) |
phi3 |
E6(a1) |
|
467 |
1 |
2^7*7 |
E6(q) |
phi3 |
E6 |
|
468 |
1 |
2^7*7 |
E6(q) |
phi3 |
E6 |
|
469 |
1 |
2^9*3^6*5*7^2 |
2A2(q) + A2(q2) |
phi3 |
[ [ 1, 1, 1 ], [ 1, 1, 1 ] ] |
|
470 |
1 |
2^9*3^4*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 1, 1, 1 ], [ 2, 1 ] ] |
|
471 |
1 |
2^7*3^3*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 1, 1, 1 ], [ 3 ] ] |
|
472 |
1 |
2^9*3^4*5*7^2 |
2A2(q) + A2(q2) |
phi3 |
[ [ 2, 1 ], [ 1, 1, 1 ] ] |
|
473 |
1 |
2^9*3^2*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 2, 1 ], [ 2, 1 ] ] |
|
474 |
1 |
2^7*3*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 2, 1 ], [ 3 ] ] |
|
475 |
1 |
2^8*3^3*5*7^2 |
2A2(q) + A2(q2) |
phi3 |
[ [ 3 ], [ 1, 1, 1 ] ] |
|
476 |
1 |
2^8*3*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 3 ], [ 2, 1 ] ] |
|
477 |
1 |
2^6*3*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 3 ], [ 3 ] ] |
|
478 |
1 |
2^6*3*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 3 ], [ 3 ] ] |
|
479 |
1 |
2^6*3*7 |
2A2(q) + A2(q2) |
phi3 |
[ [ 3 ], [ 3 ] ] |
|
480 |
1 |
2^30*3^6*5^4*7*11*13*17*31 |
2D6(q) |
phi4 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
481 |
1 |
2^30*3^5*5^2*7*17 |
2D6(q) |
phi4 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
482 |
1 |
2^26*3^5*5^3*7*17 |
2D6(q) |
phi4 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
483 |
1 |
2^28*3^3*5^3 |
2D6(q) |
phi4 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
484 |
1 |
2^26*3^3*5^2 |
2D6(q) |
phi4 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
485 |
1 |
2^23*3^3*5^2*7 |
2D6(q) |
phi4 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
486 |
1 |
2^23*3^4*5^2 |
2D6(q) |
phi4 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
487 |
1 |
2^24*3^2*5^2 |
2D6(q) |
phi4 |
[ [ 2, 2, 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
488 |
1 |
2^18*3^4*5^2*7 |
2D6(q) |
phi4 |
[ [ 4, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
489 |
1 |
2^23*3^2*5 |
2D6(q) |
phi4 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 0, -1 ] ] |
|
490 |
1 |
2^23*3^2*5 |
2D6(q) |
phi4 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 0, -1 ] ] |
|
491 |
1 |
2^20*3^2*5 |
2D6(q) |
phi4 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 1, -1 ] ] |
|
492 |
1 |
2^18*3*5^2 |
2D6(q) |
phi4 |
[ [ 3, 3, 3, 3 ], [ -1, -1, -1 ] ] |
|
493 |
1 |
2^18*3^2*5 |
2D6(q) |
phi4 |
[ [ 4, 2, 2, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
494 |
1 |
2^16*3^2*5^2 |
2D6(q) |
phi4 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 0 ] ] |
|
495 |
1 |
2^17*3^2*5 |
2D6(q) |
phi4 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
496 |
1 |
2^17*3*5^2 |
2D6(q) |
phi4 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
497 |
1 |
2^16*3*5 |
2D6(q) |
phi4 |
[ [ 4, 3, 3, 2 ], [ -1, 1, -1, 1 ] ] |
|
498 |
1 |
2^16*3*5 |
2D6(q) |
phi4 |
[ [ 4, 4, 2, 2 ], [ -1, 0, -1, 1 ] ] |
|
499 |
1 |
2^16*3*5 |
2D6(q) |
phi4 |
[ [ 4, 4, 2, 2 ], [ -1, 1, -1, 0 ] ] |
|
500 |
1 |
2^13*3^2*5^2 |
2D6(q) |
phi4 |
[ [ 6, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
501 |
1 |
2^13*3^2*5^2 |
2D6(q) |
phi4 |
[ [ 6, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
502 |
1 |
2^16*5 |
2D6(q) |
phi4 |
[ [ 4, 4, 2, 2 ], [ -1, 1, -1, 1 ] ] |
|
503 |
1 |
2^13*3*5 |
2D6(q) |
phi4 |
[ [ 5, 5, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
|
504 |
1 |
2^13*3*5 |
2D6(q) |
phi4 |
[ [ 5, 5, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
|
505 |
1 |
2^13*3*5 |
2D6(q) |
phi4 |
[ [ 6, 2, 2, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
506 |
1 |
2^13*3*5 |
2D6(q) |
phi4 |
[ [ 6, 2, 2, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
507 |
1 |
2^12*5 |
2D6(q) |
phi4 |
[ [ 6, 4, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
508 |
1 |
2^12*3*5 |
2D6(q) |
phi4 |
[ [ 6, 4, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
509 |
1 |
2^10*5 |
2D6(q) |
phi4 |
[ [ 6, 6 ], [ -1, -1, -1, -1, -1, 1 ] ] |
|
510 |
1 |
2^9*3*5 |
2D6(q) |
phi4 |
[ [ 8, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
511 |
1 |
2^9*3*5 |
2D6(q) |
phi4 |
[ [ 8, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
512 |
1 |
2^9*5 |
2D6(q) |
phi4 |
[ [ 8, 4 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
513 |
1 |
2^9*5 |
2D6(q) |
phi4 |
[ [ 8, 4 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
|
514 |
1 |
2^7*5 |
2D6(q) |
phi4 |
[ [ 10, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
515 |
1 |
2^7*5 |
2D6(q) |
phi4 |
[ [ 10, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
|
516 |
1 |
2^15*3^5*7^4*13 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 1, 1, 1 ] ] |
|
517 |
1 |
2^15*3^4*7^3*13 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 2, 1 ] ] |
|
518 |
1 |
2^14*3^4*7^3*13 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 3 ] ] |
|
519 |
1 |
2^15*3^3*7^3 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 1, 1, 1 ] ] |
|
520 |
1 |
2^15*3^2*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 2, 1 ] ] |
|
521 |
1 |
2^14*3^2*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 3 ] ] |
|
522 |
1 |
2^13*3^2*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 1, 1, 1 ] ] |
|
523 |
1 |
2^13*3*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 2, 1 ] ] |
|
524 |
1 |
2^12*3*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 3 ] ] |
|
525 |
1 |
2^12*3*7^3 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1, 1 ] ] |
|
526 |
1 |
2^12*3^2*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1, 1 ] ] |
|
527 |
1 |
2^12*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2, 1 ] ] |
|
528 |
1 |
2^12*3*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2, 1 ] ] |
|
529 |
1 |
2^11*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 3 ] ] |
|
530 |
1 |
2^11*3*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 3 ] ] |
|
531 |
1 |
2^9*3*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 1, 1, 1 ] ] |
|
532 |
1 |
2^9*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 2, 1 ] ] |
|
533 |
1 |
2^8*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 3 ] ] |
|
534 |
1 |
2^8*3*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1, 1 ] ] |
|
535 |
1 |
2^8*3*7^2 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1, 1 ] ] |
|
536 |
1 |
2^8*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2, 1 ] ] |
|
537 |
1 |
2^8*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2, 1 ] ] |
|
538 |
1 |
2^7*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 3 ] ] |
|
539 |
1 |
2^7*7 |
3D4(q) + A2(q) |
phi3 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 3 ] ] |
|
540 |
1 |
2^20*3^6*5^3*7*17*31 |
D5(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
541 |
1 |
2^20*3^4*5^2*7 |
D5(q) |
phi2 phi4 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
542 |
1 |
2^17*3^5*5^2*7 |
D5(q) |
phi2 phi4 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
543 |
1 |
2^18*3^3*5^2 |
D5(q) |
phi2 phi4 |
[ [ 2, 2, 2, 2, 1, 1 ], [ -1, 0 ] ] |
|
544 |
1 |
2^17*3^3*5 |
D5(q) |
phi2 phi4 |
[ [ 2, 2, 2, 2, 1, 1 ], [ -1, 1 ] ] |
|
545 |
1 |
2^15*3^3*5 |
D5(q) |
phi2 phi4 |
[ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
546 |
1 |
2^15*3^3*5^2 |
D5(q) |
phi2 phi4 |
[ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
547 |
1 |
2^14*3^2*5 |
D5(q) |
phi2 phi4 |
[ [ 3, 3, 2, 2 ], [ -1, 0, -1 ] ] |
|
548 |
1 |
2^11*3^3*5^2 |
D5(q) |
phi2 phi4 |
[ [ 4, 2, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
549 |
1 |
2^13*3^2*5 |
D5(q) |
phi2 phi4 |
[ [ 3, 3, 2, 2 ], [ -1, 1, -1 ] ] |
|
550 |
1 |
2^11*3^2*5 |
D5(q) |
phi2 phi4 |
[ [ 4, 2, 2, 2 ], [ -1, 1, -1, 1 ] ] |
|
551 |
1 |
2^10*3^2*5 |
D5(q) |
phi2 phi4 |
[ [ 4, 4, 1, 1 ], [ -1, -1, -1, 0 ] ] |
|
552 |
1 |
2^11*3*5 |
D5(q) |
phi2 phi4 |
[ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
553 |
1 |
2^11*3^2*5 |
D5(q) |
phi2 phi4 |
[ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
554 |
1 |
2^8*3*5 |
D5(q) |
phi2 phi4 |
[ [ 5, 5 ], [ -1, -1, -1, -1, -1 ] ] |
|
555 |
1 |
2^8*3^2*5 |
D5(q) |
phi2 phi4 |
[ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
556 |
1 |
2^8*3^2*5 |
D5(q) |
phi2 phi4 |
[ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
557 |
1 |
2^7*3*5 |
D5(q) |
phi2 phi4 |
[ [ 6, 4 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
558 |
1 |
2^6*3*5 |
D5(q) |
phi2 phi4 |
[ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
559 |
1 |
2^6*3*5 |
D5(q) |
phi2 phi4 |
[ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
560 |
1 |
2^20*3^8*5^2*7*11*17 |
2D5(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
561 |
1 |
2^20*3^7*5 |
2D5(q) |
phi2 phi6 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
562 |
1 |
2^17*3^6*5*7 |
2D5(q) |
phi2 phi6 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
563 |
1 |
2^18*3^5*5 |
2D5(q) |
phi2 phi6 |
[ [ 2, 2, 2, 2, 1, 1 ], [ -1, 0 ] ] |
|
564 |
1 |
2^17*3^4 |
2D5(q) |
phi2 phi6 |
[ [ 2, 2, 2, 2, 1, 1 ], [ -1, 1 ] ] |
|
565 |
1 |
2^15*3^5 |
2D5(q) |
phi2 phi6 |
[ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
566 |
1 |
2^15*3^3*5 |
2D5(q) |
phi2 phi6 |
[ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
|
567 |
1 |
2^14*3^4 |
2D5(q) |
phi2 phi6 |
[ [ 3, 3, 2, 2 ], [ -1, 0, -1 ] ] |
|
568 |
1 |
2^11*3^4*5 |
2D5(q) |
phi2 phi6 |
[ [ 4, 2, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
569 |
1 |
2^13*3^3 |
2D5(q) |
phi2 phi6 |
[ [ 3, 3, 2, 2 ], [ -1, 1, -1 ] ] |
|
570 |
1 |
2^11*3^3 |
2D5(q) |
phi2 phi6 |
[ [ 4, 2, 2, 2 ], [ -1, 1, -1, 1 ] ] |
|
571 |
1 |
2^10*3^4 |
2D5(q) |
phi2 phi6 |
[ [ 4, 4, 1, 1 ], [ -1, -1, -1, 0 ] ] |
|
572 |
1 |
2^11*3^2 |
2D5(q) |
phi2 phi6 |
[ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
573 |
1 |
2^11*3^3 |
2D5(q) |
phi2 phi6 |
[ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ] |
|
574 |
1 |
2^8*3^3 |
2D5(q) |
phi2 phi6 |
[ [ 5, 5 ], [ -1, -1, -1, -1, -1 ] ] |
|
575 |
1 |
2^8*3^3 |
2D5(q) |
phi2 phi6 |
[ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
576 |
1 |
2^8*3^3 |
2D5(q) |
phi2 phi6 |
[ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
577 |
1 |
2^7*3^2 |
2D5(q) |
phi2 phi6 |
[ [ 6, 4 ], [ -1, -1, -1, 1, -1, 1 ] ] |
|
578 |
1 |
2^6*3^2 |
2D5(q) |
phi2 phi6 |
[ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
579 |
1 |
2^6*3^2 |
2D5(q) |
phi2 phi6 |
[ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
|
580 |
1 |
2^11*3^8*5*11 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1, 1 ], [ 1, 1 ] ] |
|
581 |
1 |
2^11*3^7*5*11 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1, 1 ], [ 2 ] ] |
|
582 |
1 |
2^11*3^7 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 2, 1, 1, 1 ], [ 1, 1 ] ] |
|
583 |
1 |
2^11*3^6 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 2, 1, 1, 1 ], [ 2 ] ] |
|
584 |
1 |
2^10*3^5 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 2, 2, 1 ], [ 1, 1 ] ] |
|
585 |
1 |
2^10*3^4 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 2, 2, 1 ], [ 2 ] ] |
|
586 |
1 |
2^8*3^5 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 3, 1, 1 ], [ 1, 1 ] ] |
|
587 |
1 |
2^8*3^4 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 3, 1, 1 ], [ 2 ] ] |
|
588 |
1 |
2^8*3^4 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 3, 2 ], [ 1, 1 ] ] |
|
589 |
1 |
2^8*3^3 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 3, 2 ], [ 2 ] ] |
|
590 |
1 |
2^6*3^4 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 4, 1 ], [ 1, 1 ] ] |
|
591 |
1 |
2^6*3^3 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 4, 1 ], [ 2 ] ] |
|
592 |
1 |
2^5*3^3 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 5 ], [ 1, 1 ] ] |
|
593 |
1 |
2^5*3^2 |
2A4(q) + A1(q) |
phi2 phi6 |
[ [ 5 ], [ 2 ] ] |
|
594 |
1 |
2^6*3^4*7^3 |
A2(q) + A1(q3) |
phi2 phi3 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
|
595 |
1 |
2^6*3^2*7^2 |
A2(q) + A1(q3) |
phi2 phi3 |
[ [ 1, 1, 1 ], [ 2 ] ] |
|
596 |
1 |
2^6*3^3*7^2 |
A2(q) + A1(q3) |
phi2 phi3 |
[ [ 2, 1 ], [ 1, 1 ] ] |
|
597 |
1 |
2^6*3*7 |
A2(q) + A1(q3) |
phi2 phi3 |
[ [ 2, 1 ], [ 2 ] ] |
|
598 |
1 |
2^5*3^3*7^2 |
A2(q) + A1(q3) |
phi2 phi3 |
[ [ 3 ], [ 1, 1 ] ] |
|
599 |
1 |
2^5*3*7 |
A2(q) + A1(q3) |
phi2 phi3 |
[ [ 3 ], [ 2 ] ] |
|
600 |
1 |
2^8*3^6*5^3 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 1, 1 ] ] |
|
601 |
1 |
2^8*3^5*5^2 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 2 ] ] |
|
602 |
1 |
2^8*3^4*5^2 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 1, 1 ] ] |
|
603 |
1 |
2^8*3^3*5 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 2 ] ] |
|
604 |
1 |
2^7*3^3*5^2 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 2, 2 ], [ 1, 1 ] ] |
|
605 |
1 |
2^7*3^2*5 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 2, 2 ], [ 2 ] ] |
|
606 |
1 |
2^6*3^3*5^2 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 3, 1 ], [ 1, 1 ] ] |
|
607 |
1 |
2^6*3^2*5 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 3, 1 ], [ 2 ] ] |
|
608 |
1 |
2^5*3^2*5^2 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 4 ], [ 1, 1 ] ] |
|
609 |
1 |
2^5*3*5 |
2A3(q) + A1(q2) |
phi2 phi4 |
[ [ 4 ], [ 2 ] ] |
|
610 |
1 |
2^15*3^5*5*7^3*31 |
A5(q) |
phi2 phi3 |
[ 1, 1, 1, 1, 1, 1 ] |
|
611 |
1 |
2^15*3^3*5*7^2 |
A5(q) |
phi2 phi3 |
[ 2, 1, 1, 1, 1 ] |
|
612 |
1 |
2^14*3^3*7 |
A5(q) |
phi2 phi3 |
[ 2, 2, 1, 1 ] |
|
613 |
1 |
2^12*3^2*7^2 |
A5(q) |
phi2 phi3 |
[ 2, 2, 2 ] |
|
614 |
1 |
2^11*3^2*7^2 |
A5(q) |
phi2 phi3 |
[ 3, 1, 1, 1 ] |
|
615 |
1 |
2^11*3*7 |
A5(q) |
phi2 phi3 |
[ 3, 2, 1 ] |
|
616 |
1 |
2^9*3^2*7 |
A5(q) |
phi2 phi3 |
[ 3, 3 ] |
|
617 |
1 |
2^8*3^2*7 |
A5(q) |
phi2 phi3 |
[ 4, 1, 1 ] |
|
618 |
1 |
2^8*3*7 |
A5(q) |
phi2 phi3 |
[ 4, 2 ] |
|
619 |
1 |
2^6*3*7 |
A5(q) |
phi2 phi3 |
[ 5, 1 ] |
|
620 |
1 |
2^5*3*7 |
A5(q) |
phi2 phi3 |
[ 6 ] |
|
621 |
1 |
2^9*3^6*5^2*7 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 1, 1, 1 ] ] |
|
622 |
1 |
2^9*3^4*5^2*7 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 2, 1 ] ] |
|
623 |
1 |
2^8*3^3*5^2*7 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 3 ] ] |
|
624 |
1 |
2^9*3^5*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 1, 1, 1 ] ] |
|
625 |
1 |
2^9*3^3*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 2, 1 ] ] |
|
626 |
1 |
2^8*3^2*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 3 ] ] |
|
627 |
1 |
2^8*3^5*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 2, 2 ], [ 1, 1, 1 ] ] |
|
628 |
1 |
2^8*3^3*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 2, 2 ], [ 2, 1 ] ] |
|
629 |
1 |
2^7*3^2*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 2, 2 ], [ 3 ] ] |
|
630 |
1 |
2^7*3^4*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 3, 1 ], [ 1, 1, 1 ] ] |
|
631 |
1 |
2^7*3^2*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 3, 1 ], [ 2, 1 ] ] |
|
632 |
1 |
2^6*3*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 3, 1 ], [ 3 ] ] |
|
633 |
1 |
2^6*3^4*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 4 ], [ 1, 1, 1 ] ] |
|
634 |
1 |
2^6*3^2*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 4 ], [ 2, 1 ] ] |
|
635 |
1 |
2^5*3*5 |
A3(q) + 2A2(q) |
phi2 phi4 |
[ [ 4 ], [ 3 ] ] |
|
636 |
1 |
2^13*3^6*5^2*7*17 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 1, 1 ] ] |
|
637 |
1 |
2^13*3^5*5^2*7*17 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 2 ] ] |
|
638 |
1 |
2^13*3^4*5^2 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
|
639 |
1 |
2^13*3^3*5^2 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
|
640 |
1 |
2^11*3^4*5^2 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 1, 1 ] ] |
|
641 |
1 |
2^11*3^3*5^2 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 2 ] ] |
|
642 |
1 |
2^11*3^3*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 1, 1 ] ] |
|
643 |
1 |
2^11*3^2*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 2 ] ] |
|
644 |
1 |
2^10*3^3*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
645 |
1 |
2^10*3^3*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
646 |
1 |
2^10*3^2*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
647 |
1 |
2^10*3^2*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
648 |
1 |
2^7*3^3*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
|
649 |
1 |
2^7*3^2*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 2 ] ] |
|
650 |
1 |
2^7*3^2*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
651 |
1 |
2^7*3*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
|
652 |
1 |
2^6*3^2*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
653 |
1 |
2^6*3^2*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
654 |
1 |
2^6*3*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
655 |
1 |
2^6*3*5 |
2D4(q) + A1(q) |
phi2 phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
656 |
1 |
2^13*3^7*7^2*13 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 1, 1 ] ] |
|
657 |
1 |
2^13*3^6*7^2*13 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 2 ] ] |
|
658 |
1 |
2^13*3^5*7 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
|
659 |
1 |
2^13*3^4*7 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
|
660 |
1 |
2^11*3^4 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 1, 1 ] ] |
|
661 |
1 |
2^11*3^3 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 2 ] ] |
|
662 |
1 |
2^10*3^3*7 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
663 |
1 |
2^10*3^4 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
|
664 |
1 |
2^10*3^2*7 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
665 |
1 |
2^10*3^3 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
|
666 |
1 |
2^7*3^3 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
667 |
1 |
2^7*3^2 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
|
668 |
1 |
2^6*3^3 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
669 |
1 |
2^6*3^3 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
|
670 |
1 |
2^6*3^2 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
671 |
1 |
2^6*3^2 |
3D4(q) + A1(q) |
phi2 phi6 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
|
672 |
3 |
2^10*3^2*5*7*31^2 |
A4(q) |
phi5 |
[ 1, 1, 1, 1, 1 ] |
|
673 |
3 |
2^10*3*7*31 |
A4(q) |
phi5 |
[ 2, 1, 1, 1 ] |
|
674 |
3 |
2^9*3*31 |
A4(q) |
phi5 |
[ 2, 2, 1 ] |
|
675 |
3 |
2^7*3*31 |
A4(q) |
phi5 |
[ 3, 1, 1 ] |
|
676 |
3 |
2^7*31 |
A4(q) |
phi5 |
[ 3, 2 ] |
|
677 |
3 |
2^5*31 |
A4(q) |
phi5 |
[ 4, 1 ] |
|
678 |
3 |
2^4*31 |
A4(q) |
phi5 |
[ 5 ] |
|
679 |
1 |
2^10*3^5*5*11^2 |
2A4(q) |
phi10 |
[ 1, 1, 1, 1, 1 ] |
|
680 |
1 |
2^10*3^4*11 |
2A4(q) |
phi10 |
[ 2, 1, 1, 1 ] |
|
681 |
1 |
2^9*3^2*11 |
2A4(q) |
phi10 |
[ 2, 2, 1 ] |
|
682 |
1 |
2^7*3^2*11 |
2A4(q) |
phi10 |
[ 3, 1, 1 ] |
|
683 |
1 |
2^7*3*11 |
2A4(q) |
phi10 |
[ 3, 2 ] |
|
684 |
1 |
2^5*3*11 |
2A4(q) |
phi10 |
[ 4, 1 ] |
|
685 |
1 |
2^4*11 |
2A4(q) |
phi10 |
[ 5 ] |
|
686 |
1 |
2^10*3^6*5^2*11 |
2A4(q) |
phi1 phi2 phi4 |
[ 1, 1, 1, 1, 1 ] |
|
687 |
1 |
2^10*3^5*5 |
2A4(q) |
phi1 phi2 phi4 |
[ 2, 1, 1, 1 ] |
|
688 |
1 |
2^9*3^3*5 |
2A4(q) |
phi1 phi2 phi4 |
[ 2, 2, 1 ] |
|
689 |
1 |
2^7*3^3*5 |
2A4(q) |
phi1 phi2 phi4 |
[ 3, 1, 1 ] |
|
690 |
1 |
2^7*3^2*5 |
2A4(q) |
phi1 phi2 phi4 |
[ 3, 2 ] |
|
691 |
1 |
2^5*3^2*5 |
2A4(q) |
phi1 phi2 phi4 |
[ 4, 1 ] |
|
692 |
1 |
2^4*3*5 |
2A4(q) |
phi1 phi2 phi4 |
[ 5 ] |
|
693 |
2 |
2^4*3*5*17^2 |
A1(q4) |
phi8 |
[ 1, 1 ] |
|
694 |
2 |
2^4*17 |
A1(q4) |
phi8 |
[ 2 ] |
|
695 |
1 |
2^4*3^2*5^2*17 |
A1(q4) |
phi1 phi2 phi4 |
[ 1, 1 ] |
|
696 |
1 |
2^4*3*5 |
A1(q4) |
phi1 phi2 phi4 |
[ 2 ] |
|
697 |
1 |
2^6*3^5*7^2 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 1, 1, 1 ], [ 1, 1, 1 ] ] |
|
698 |
1 |
2^6*3^3*7^2 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 1, 1, 1 ], [ 2, 1 ] ] |
|
699 |
1 |
2^5*3^2*7^2 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 1, 1, 1 ], [ 3 ] ] |
|
700 |
1 |
2^6*3^4*7 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 2, 1 ], [ 1, 1, 1 ] ] |
|
701 |
1 |
2^6*3^2*7 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 2, 1 ], [ 2, 1 ] ] |
|
702 |
1 |
2^5*3*7 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 2, 1 ], [ 3 ] ] |
|
703 |
1 |
2^5*3^4*7 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 3 ], [ 1, 1, 1 ] ] |
|
704 |
1 |
2^5*3^2*7 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 3 ], [ 2, 1 ] ] |
|
705 |
1 |
2^4*3*7 |
A2(q) + 2A2(q) |
phi3 phi6 |
[ [ 3 ], [ 3 ] ] |
|
706 |
1 |
2^6*3^2*5^3*13 |
2A2(q2) |
phi1 phi2 phi4 |
[ 1, 1, 1 ] |
|
707 |
1 |
2^6*3*5^2 |
2A2(q2) |
phi1 phi2 phi4 |
[ 2, 1 ] |
|
708 |
1 |
2^4*3*5 |
2A2(q2) |
phi1 phi2 phi4 |
[ 3 ] |
|
709 |
1 |
2^6*3*5^2*13^2 |
2A2(q2) |
phi12 |
[ 1, 1, 1 ] |
|
710 |
1 |
2^6*5*13 |
2A2(q2) |
phi12 |
[ 2, 1 ] |
|
711 |
1 |
2^4*13 |
2A2(q2) |
phi12 |
[ 3 ] |
|
712 |
1 |
2^12*3^4*7^2*13^2 |
3D4(q) |
phi12 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
713 |
1 |
2^12*3^2*7*13 |
3D4(q) |
phi12 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
714 |
1 |
2^10*3*13 |
3D4(q) |
phi12 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
715 |
1 |
2^9*7*13 |
3D4(q) |
phi12 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
716 |
1 |
2^9*3*13 |
3D4(q) |
phi12 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
717 |
1 |
2^6*13 |
3D4(q) |
phi12 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
|
718 |
1 |
2^5*13 |
3D4(q) |
phi12 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
719 |
1 |
2^5*13 |
3D4(q) |
phi12 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
720 |
1 |
2^12*3^5*7^3*13 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
721 |
1 |
2^12*3^3*7^2 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
722 |
1 |
2^10*3^2*7 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
723 |
1 |
2^9*3*7^2 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
724 |
1 |
2^9*3^2*7 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
725 |
1 |
2^6*3*7 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
|
726 |
1 |
2^5*3*7 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
727 |
1 |
2^5*3*7 |
3D4(q) |
phi1 phi2 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
728 |
1 |
2^12*3^5*5*7^2*17 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
729 |
1 |
2^12*3^3*5*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
730 |
1 |
2^10*3^3*5*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
731 |
1 |
2^10*3^2*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
732 |
1 |
2^9*3^2*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
733 |
1 |
2^9*3^2*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
734 |
1 |
2^6*3^2*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
735 |
1 |
2^6*3*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
|
736 |
1 |
2^5*3*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
737 |
1 |
2^5*3*7 |
2D4(q) |
phi1 phi2 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
738 |
2 |
2^12*3^4*5*7*17^2 |
2D4(q) |
phi8 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
|
739 |
2 |
2^12*3^2*5*17 |
2D4(q) |
phi8 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
|
740 |
2 |
2^10*3^2*5*17 |
2D4(q) |
phi8 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ] |
|
741 |
2 |
2^10*3*17 |
2D4(q) |
phi8 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
|
742 |
2 |
2^9*3*17 |
2D4(q) |
phi8 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
743 |
2 |
2^9*3*17 |
2D4(q) |
phi8 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
|
744 |
2 |
2^6*3*17 |
2D4(q) |
phi8 |
[ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
|
745 |
2 |
2^6*17 |
2D4(q) |
phi8 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
|
746 |
2 |
2^5*17 |
2D4(q) |
phi8 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
747 |
2 |
2^5*17 |
2D4(q) |
phi8 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
|
748 |
2 |
2^4*3^5*11 |
2A2(q) + A1(q) |
phi2 phi10 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
|
749 |
2 |
2^4*3^4*11 |
2A2(q) + A1(q) |
phi2 phi10 |
[ [ 1, 1, 1 ], [ 2 ] ] |
|
750 |
2 |
2^4*3^3*11 |
2A2(q) + A1(q) |
phi2 phi10 |
[ [ 2, 1 ], [ 1, 1 ] ] |
|
751 |
2 |
2^4*3^2*11 |
2A2(q) + A1(q) |
phi2 phi10 |
[ [ 2, 1 ], [ 2 ] ] |
|
752 |
2 |
2^3*3^2*11 |
2A2(q) + A1(q) |
phi2 phi10 |
[ [ 3 ], [ 1, 1 ] ] |
|
753 |
2 |
2^3*3*11 |
2A2(q) + A1(q) |
phi2 phi10 |
[ [ 3 ], [ 2 ] ] |
|
754 |
3 |
2^4*3^4*7^2 |
A2(q) + A1(q) |
phi2 phi3 phi6 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
|
755 |
3 |
2^4*3^3*7^2 |
A2(q) + A1(q) |
phi2 phi3 phi6 |
[ [ 1, 1, 1 ], [ 2 ] ] |
|
756 |
3 |
2^4*3^3*7 |
A2(q) + A1(q) |
phi2 phi3 phi6 |
[ [ 2, 1 ], [ 1, 1 ] ] |
|
757 |
3 |
2^4*3^2*7 |
A2(q) + A1(q) |
phi2 phi3 phi6 |
[ [ 2, 1 ], [ 2 ] ] |
|
758 |
3 |
2^3*3^3*7 |
A2(q) + A1(q) |
phi2 phi3 phi6 |
[ [ 3 ], [ 1, 1 ] ] |
|
759 |
3 |
2^3*3^2*7 |
A2(q) + A1(q) |
phi2 phi3 phi6 |
[ [ 3 ], [ 2 ] ] |
|
760 |
1 |
2^3*3^4*7^2 |
A1(q3) |
phi1 phi2^2 phi3 |
[ 1, 1 ] |
|
761 |
1 |
2^3*3^2*7 |
A1(q3) |
phi1 phi2^2 phi3 |
[ 2 ] |
|
762 |
1 |
2^3*3^3*7*13 |
A1(q3) |
phi2 phi12 |
[ 1, 1 ] |
|
763 |
1 |
2^3*3*13 |
A1(q3) |
phi2 phi12 |
[ 2 ] |
|
764 |
2 |
2^3*3^3*5*17 |
A1(q) + A1(q2) |
phi2 phi8 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
765 |
2 |
2^3*3^2*17 |
A1(q) + A1(q2) |
phi2 phi8 |
[ [ 1, 1 ], [ 2 ] ] |
|
766 |
2 |
2^3*3^2*5*17 |
A1(q) + A1(q2) |
phi2 phi8 |
[ [ 2 ], [ 1, 1 ] ] |
|
767 |
2 |
2^3*3*17 |
A1(q) + A1(q2) |
phi2 phi8 |
[ [ 2 ], [ 2 ] ] |
|
768 |
2 |
2^6*3^5*5*11 |
2A3(q) |
phi2 phi10 |
[ 1, 1, 1, 1 ] |
|
769 |
2 |
2^6*3^3*11 |
2A3(q) |
phi2 phi10 |
[ 2, 1, 1 ] |
|
770 |
2 |
2^5*3^2*11 |
2A3(q) |
phi2 phi10 |
[ 2, 2 ] |
|
771 |
2 |
2^4*3^2*11 |
2A3(q) |
phi2 phi10 |
[ 3, 1 ] |
|
772 |
2 |
2^3*3*11 |
2A3(q) |
phi2 phi10 |
[ 4 ] |
|
773 |
1 |
2^6*3^4*5^2*7 |
A3(q) |
phi2 phi4 phi6 |
[ 1, 1, 1, 1 ] |
|
774 |
1 |
2^6*3^3*5 |
A3(q) |
phi2 phi4 phi6 |
[ 2, 1, 1 ] |
|
775 |
1 |
2^5*3^3*5 |
A3(q) |
phi2 phi4 phi6 |
[ 2, 2 ] |
|
776 |
1 |
2^4*3^2*5 |
A3(q) |
phi2 phi4 phi6 |
[ 3, 1 ] |
|
777 |
1 |
2^3*3^2*5 |
A3(q) |
phi2 phi4 phi6 |
[ 4 ] |
|
778 |
1 |
2^6*3^4*5^2*7 |
2A3(q) |
phi1 phi3 phi4 |
[ 1, 1, 1, 1 ] |
|
779 |
1 |
2^6*3^2*5*7 |
2A3(q) |
phi1 phi3 phi4 |
[ 2, 1, 1 ] |
|
780 |
1 |
2^5*3*5*7 |
2A3(q) |
phi1 phi3 phi4 |
[ 2, 2 ] |
|
781 |
1 |
2^4*3*5*7 |
2A3(q) |
phi1 phi3 phi4 |
[ 3, 1 ] |
|
782 |
1 |
2^3*5*7 |
2A3(q) |
phi1 phi3 phi4 |
[ 4 ] |
|
783 |
2 |
2^6*3^3*5*7*17 |
A3(q) |
phi2 phi8 |
[ 1, 1, 1, 1 ] |
|
784 |
2 |
2^6*3^2*17 |
A3(q) |
phi2 phi8 |
[ 2, 1, 1 ] |
|
785 |
2 |
2^5*3^2*17 |
A3(q) |
phi2 phi8 |
[ 2, 2 ] |
|
786 |
2 |
2^4*3*17 |
A3(q) |
phi2 phi8 |
[ 3, 1 ] |
|
787 |
2 |
2^3*3*17 |
A3(q) |
phi2 phi8 |
[ 4 ] |
|
788 |
3 |
2^2*3^2*5*31 |
A1(q2) |
phi1 phi2 phi5 |
[ 1, 1 ] |
|
789 |
3 |
2^2*3*31 |
A1(q2) |
phi1 phi2 phi5 |
[ 2 ] |
|
790 |
1 |
2^2*3^4*11 |
A1(q) + A1(q) |
phi2^2 phi10 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
791 |
1 |
2^2*3^3*11 |
A1(q) + A1(q) |
phi2^2 phi10 |
[ [ 1, 1 ], [ 2 ] ] |
|
792 |
1 |
2^2*3^3*11 |
A1(q) + A1(q) |
phi2^2 phi10 |
[ [ 2 ], [ 1, 1 ] ] |
|
793 |
1 |
2^2*3^2*11 |
A1(q) + A1(q) |
phi2^2 phi10 |
[ [ 2 ], [ 2 ] ] |
|
794 |
1 |
2^2*3^3*5*7 |
A1(q) + A1(q) |
phi1 phi2 phi3 phi4 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
795 |
1 |
2^2*3^2*5*7 |
A1(q) + A1(q) |
phi1 phi2 phi3 phi4 |
[ [ 1, 1 ], [ 2 ] ] |
|
796 |
1 |
2^2*3^2*5*7 |
A1(q) + A1(q) |
phi1 phi2 phi3 phi4 |
[ [ 2 ], [ 1, 1 ] ] |
|
797 |
1 |
2^2*3*5*7 |
A1(q) + A1(q) |
phi1 phi2 phi3 phi4 |
[ [ 2 ], [ 2 ] ] |
|
798 |
1 |
2^2*3^4*5^2 |
A1(q2) |
phi2^2 phi4 phi6 |
[ 1, 1 ] |
|
799 |
1 |
2^2*3^3*5 |
A1(q2) |
phi2^2 phi4 phi6 |
[ 2 ] |
|
800 |
4 |
2^2*3*5^2*13 |
A1(q2) |
phi4 phi12 |
[ 1, 1 ] |
|
801 |
4 |
2^2*5*13 |
A1(q2) |
phi4 phi12 |
[ 2 ] |
|
802 |
1 |
2^2*3^3*5*7 |
A1(q2) |
phi1 phi2 phi3 phi6 |
[ 1, 1 ] |
|
803 |
1 |
2^2*3^2*7 |
A1(q2) |
phi1 phi2 phi3 phi6 |
[ 2 ] |
|
804 |
2 |
2^2*3^2*5*17 |
A1(q) + A1(q) |
phi4 phi8 |
[ [ 1, 1 ], [ 1, 1 ] ] |
|
805 |
2 |
2^2*3*5*17 |
A1(q) + A1(q) |
phi4 phi8 |
[ [ 1, 1 ], [ 2 ] ] |
|
806 |
2 |
2^2*3*5*17 |
A1(q) + A1(q) |
phi4 phi8 |
[ [ 2 ], [ 1, 1 ] ] |
|
807 |
2 |
2^2*5*17 |
A1(q) + A1(q) |
phi4 phi8 |
[ [ 2 ], [ 2 ] ] |
|
808 |
3 |
2^3*3^2*7*31 |
A2(q) |
phi1 phi2 phi5 |
[ 1, 1, 1 ] |
|
809 |
3 |
2^3*3*31 |
A2(q) |
phi1 phi2 phi5 |
[ 2, 1 ] |
|
810 |
3 |
2^2*3*31 |
A2(q) |
phi1 phi2 phi5 |
[ 3 ] |
|
811 |
1 |
2^3*3^5*11 |
2A2(q) |
phi2^2 phi10 |
[ 1, 1, 1 ] |
|
812 |
1 |
2^3*3^3*11 |
2A2(q) |
phi2^2 phi10 |
[ 2, 1 ] |
|
813 |
1 |
2^2*3^2*11 |
2A2(q) |
phi2^2 phi10 |
[ 3 ] |
|
814 |
4 |
2^3*3*7*73 |
A2(q) |
phi9 |
[ 1, 1, 1 ] |
|
815 |
4 |
2^3*73 |
A2(q) |
phi9 |
[ 2, 1 ] |
|
816 |
4 |
2^2*73 |
A2(q) |
phi9 |
[ 3 ] |
|
817 |
3 |
2^3*3*7^2*13 |
A2(q) |
phi3 phi12 |
[ 1, 1, 1 ] |
|
818 |
3 |
2^3*7*13 |
A2(q) |
phi3 phi12 |
[ 2, 1 ] |
|
819 |
3 |
2^2*7*13 |
A2(q) |
phi3 phi12 |
[ 3 ] |
|
820 |
1 |
2^3*3^4*13 |
2A2(q) |
phi6 phi12 |
[ 1, 1, 1 ] |
|
821 |
1 |
2^3*3^2*13 |
2A2(q) |
phi6 phi12 |
[ 2, 1 ] |
|
822 |
1 |
2^2*3*13 |
2A2(q) |
phi6 phi12 |
[ 3 ] |
|
823 |
3 |
2^3*3^4*19 |
2A2(q) |
phi18 |
[ 1, 1, 1 ] |
|
824 |
3 |
2^3*3^2*19 |
2A2(q) |
phi18 |
[ 2, 1 ] |
|
825 |
3 |
2^2*3*19 |
2A2(q) |
phi18 |
[ 3 ] |
|
826 |
1 |
2^3*3^5*7 |
2A2(q) |
phi1 phi2 phi3 phi6 |
[ 1, 1, 1 ] |
|
827 |
1 |
2^3*3^3*7 |
2A2(q) |
phi1 phi2 phi3 phi6 |
[ 2, 1 ] |
|
828 |
1 |
2^2*3^2*7 |
2A2(q) |
phi1 phi2 phi3 phi6 |
[ 3 ] |
|
829 |
2 |
2^3*3^4*5*7 |
2A2(q) |
phi1 phi2 phi3 phi4 |
[ 1, 1, 1 ] |
|
830 |
2 |
2^3*3^2*5*7 |
2A2(q) |
phi1 phi2 phi3 phi4 |
[ 2, 1 ] |
|
831 |
2 |
2^2*3*5*7 |
2A2(q) |
phi1 phi2 phi3 phi4 |
[ 3 ] |
|
832 |
2 |
2^3*3^4*17 |
2A2(q) |
phi1 phi2 phi8 |
[ 1, 1, 1 ] |
|
833 |
2 |
2^3*3^2*17 |
2A2(q) |
phi1 phi2 phi8 |
[ 2, 1 ] |
|
834 |
2 |
2^2*3*17 |
2A2(q) |
phi1 phi2 phi8 |
[ 3 ] |
|
835 |
9 |
2*3*127 |
A1(q) |
phi1 phi7 |
[ 1, 1 ] |
|
836 |
9 |
2*127 |
A1(q) |
phi1 phi7 |
[ 2 ] |
|
837 |
9 |
2*3^2*43 |
A1(q) |
phi2 phi14 |
[ 1, 1 ] |
|
838 |
9 |
2*3*43 |
A1(q) |
phi2 phi14 |
[ 2 ] |
|
839 |
6 |
2*3*7*31 |
A1(q) |
phi1 phi3 phi5 |
[ 1, 1 ] |
|
840 |
6 |
2*7*31 |
A1(q) |
phi1 phi3 phi5 |
[ 2 ] |
|
841 |
2 |
2*3^3*11 |
A1(q) |
phi2 phi6 phi10 |
[ 1, 1 ] |
|
842 |
2 |
2*3^2*11 |
A1(q) |
phi2 phi6 phi10 |
[ 2 ] |
|
843 |
1 |
2*3^3*7^2 |
A1(q) |
phi2 phi3^2 phi6 |
[ 1, 1 ] |
|
844 |
1 |
2*3^2*7^2 |
A1(q) |
phi2 phi3^2 phi6 |
[ 2 ] |
|
845 |
3 |
2*3^3*13 |
A1(q) |
phi2 phi6 phi12 |
[ 1, 1 ] |
|
846 |
3 |
2*3^2*13 |
A1(q) |
phi2 phi6 phi12 |
[ 2 ] |
|
847 |
6 |
2*3^3*19 |
A1(q) |
phi2 phi18 |
[ 1, 1 ] |
|
848 |
6 |
2*3^2*19 |
A1(q) |
phi2 phi18 |
[ 2 ] |
|
849 |
3 |
2*3^4*7 |
A1(q) |
phi1 phi2^2 phi3 phi6 |
[ 1, 1 ] |
|
850 |
3 |
2*3^3*7 |
A1(q) |
phi1 phi2^2 phi3 phi6 |
[ 2 ] |
|
851 |
1 |
2*3^3*5*7 |
A1(q) |
phi1 phi2^2 phi3 phi4 |
[ 1, 1 ] |
|
852 |
1 |
2*3^2*5*7 |
A1(q) |
phi1 phi2^2 phi3 phi4 |
[ 2 ] |
|
853 |
1 |
2*3^4*5 |
A1(q) |
phi1 phi2^2 phi4 phi6 |
[ 1, 1 ] |
|
854 |
1 |
2*3^3*5 |
A1(q) |
phi1 phi2^2 phi4 phi6 |
[ 2 ] |
|
855 |
4 |
2*3^2*5*17 |
A1(q) |
phi2 phi4 phi8 |
[ 1, 1 ] |
|
856 |
4 |
2*3*5*17 |
A1(q) |
phi2 phi4 phi8 |
[ 2 ] |
|
857 |
1 |
31^2 |
A0(q) |
phi5^2 |
1 |
|
858 |
2 |
5^2*13 |
A0(q) |
phi4^2 phi12 |
1 |
|
859 |
9 |
3^2*43 |
A0(q) |
phi2^2 phi14 |
1 |
|
860 |
2 |
3^2*5*17 |
A0(q) |
phi2^2 phi4 phi8 |
1 |
|
861 |
1 |
3^3*19 |
A0(q) |
phi2^2 phi18 |
1 |
|
862 |
8 |
7*73 |
A0(q) |
phi3 phi9 |
1 |
|
863 |
2 |
3^2*19 |
A0(q) |
phi6 phi18 |
1 |
|
864 |
10 |
5*41 |
A0(q) |
phi20 |
1 |
|
865 |
1 |
7^2*13 |
A0(q) |
phi3^2 phi12 |
1 |
|
866 |
10 |
241 |
A0(q) |
phi24 |
1 |
|
867 |
2 |
3^3*11 |
A0(q) |
phi2^2 phi6 phi10 |
1 |
|
868 |
5 |
151 |
A0(q) |
phi15 |
1 |
|
869 |
11 |
331 |
A0(q) |
phi30 |
1 |
|
870 |
14 |
3*5*17 |
A0(q) |
phi1 phi2 phi4 phi8 |
1 |
|
871 |
2 |
3^2*5*7 |
A0(q) |
phi1 phi2 phi3 phi4 phi6 |
1 |
|
872 |
5 |
3*5*13 |
A0(q) |
phi1 phi2 phi4 phi12 |
1 |
|
873 |
3 |
3*7*13 |
A0(q) |
phi1 phi2 phi3 phi12 |
1 |
|
874 |
9 |
3*127 |
A0(q) |
phi1 phi2 phi7 |
1 |
|
875 |
4 |
3*73 |
A0(q) |
phi1 phi2 phi9 |
1 |
|
876 |
9 |
3*5*31 |
A0(q) |
phi1 phi2 phi4 phi5 |
1 |
|
877 |
3 |
3*5*11 |
A0(q) |
phi1 phi2 phi4 phi10 |
1 |
|
878 |
6 |
3*7*17 |
A0(q) |
phi1 phi2 phi3 phi8 |
1 |
|
879 |
2 |
3^2*17 |
A0(q) |
phi1 phi2 phi6 phi8 |
1 |
|
880 |
6 |
3*7*31 |
A0(q) |
phi1 phi2 phi3 phi5 |
1 |
The following table lists the degrees of the complex irreducible
characters of E8(2).
More character values: Actually we can in principle compute many more
character values than just the degrees. For example the
GAP file with the centralizer orders mentioned above
also contains a list valuesMinimalCharacterE82
of the values of the non-trivial character of smallest degree (545925250) of
E8(2).
There are 1156 irreducible characters.