We give the following information: each row stands for a set of classes
which have representatives with the same centralizer in G. The column "#
classes" tells how many classes are in this set. The column "|C(su)(q)|,
q=2" tells the order of the centralizer of elements in these classes. The
next two columns describe the centralizer of the semisimple part s of an
element in these classes; "type of C(s)" gives the semisimple part of the
centralizer of s in G under the restricted Frobenius morphism, and
"|Z0(C(s))(q)|" gives the number of rational points in the
radical of the centralizer of s (generically, as polynomial in q (= 2), the
polynomials are factorized into cyclotomic polynomials, phiN means the
evaluation of the N-th cyclotomic polynomial at q). Finally, in column "type
of u" a label for the class of the unipotent part u is given; we don't give
precise explanations of that labeling here.
There are 531 conjugacy classes.
| # classes | |C(su)(q)|, q=2 |
type of C(s) |
|Z0(C(s))(q)| | type of u |
1 |
1 |
2^63*3^11*5^2*7^3*11*13*17*19*31*43*73*127 |
E7(q) |
1 |
- |
2 |
1 |
2^63*3^8*5^2*7^2*11*17*31 |
E7(q) |
1 |
A1 |
3 |
1 |
2^59*3^6*5^2*7*17 |
E7(q) |
1 |
2A1 |
4 |
1 |
2^51*3^6*5^2*7^2*13*17 |
E7(q) |
1 |
3A1'' |
5 |
1 |
2^55*3^5*5*7 |
E7(q) |
1 |
3A1' |
6 |
1 |
2^48*3^4*5*7^2*31 |
E7(q) |
1 |
A2 |
7 |
1 |
2^48*3^7*5*7*11 |
E7(q) |
1 |
A2 |
8 |
1 |
2^51*3^4*5*7 |
E7(q) |
1 |
4A1 |
9 |
1 |
2^48*3^2*5*7 |
E7(q) |
1 |
A2+A1 |
10 |
1 |
2^48*3^5*5 |
E7(q) |
1 |
A2+A1 |
11 |
1 |
2^45*3^3 |
E7(q) |
1 |
A2+2A1 |
12 |
1 |
2^41*3^3*7 |
E7(q) |
1 |
A2+3A1 |
13 |
1 |
2^39*3^4*7 |
E7(q) |
1 |
2A2 |
14 |
1 |
2^35*3^5*5*7 |
E7(q) |
1 |
A3 |
15 |
1 |
2^35*3^4*5*7 |
E7(q) |
1 |
(A3+A1)'' |
16 |
1 |
2^39*3^2 |
E7(q) |
1 |
2A2+A1 |
17 |
1 |
2^35*3^3 |
E7(q) |
1 |
(A3+A1)' |
18 |
1 |
2^34*3^4 |
E7(q) |
1 |
D4(a1) |
19 |
1 |
2^34*3^2*5 |
E7(q) |
1 |
D4(a1) |
20 |
1 |
2^33*3^3*7 |
E7(q) |
1 |
D4(a1) |
21 |
1 |
2^35*3^2 |
E7(q) |
1 |
A3+2A1 |
22 |
1 |
2^34*3^2 |
E7(q) |
1 |
D4(a1)+A1 |
23 |
1 |
2^34*3*5 |
E7(q) |
1 |
D4(a1)+A1 |
24 |
1 |
2^26*3^4*5*7 |
E7(q) |
1 |
D4 |
25 |
1 |
2^26*3^4*5*7 |
E7(q) |
1 |
D4 |
26 |
1 |
2^33*3^2 |
E7(q) |
1 |
(A3+A2)2 |
27 |
1 |
2^33*3 |
E7(q) |
1 |
A3+A2 |
28 |
1 |
2^31*3 |
E7(q) |
1 |
A3+A2+A1 |
29 |
1 |
2^28*3*7 |
E7(q) |
1 |
A4 |
30 |
1 |
2^28*3^4 |
E7(q) |
1 |
A4 |
31 |
1 |
2^26*3^2*5 |
E7(q) |
1 |
D4+A1 |
32 |
1 |
2^26*3^2*5 |
E7(q) |
1 |
D4+A1 |
33 |
1 |
2^23*3^3*7 |
E7(q) |
1 |
A5'' |
34 |
1 |
2^28 |
E7(q) |
1 |
A4+A1 |
35 |
1 |
2^28*3^2 |
E7(q) |
1 |
A4+A1 |
36 |
1 |
2^25*3 |
E7(q) |
1 |
A4+A2 |
37 |
1 |
2^25*3 |
E7(q) |
1 |
D5(a1) |
38 |
1 |
2^25*3^2 |
E7(q) |
1 |
D5(a1) |
39 |
1 |
2^23*3 |
E7(q) |
1 |
D5(a1)+A1 |
40 |
1 |
2^21*3^2 |
E7(q) |
1 |
A5' |
41 |
1 |
2^23*3 |
E7(q) |
1 |
(A5+A1)'' |
42 |
1 |
2^21*3 |
E7(q) |
1 |
D6(a2) |
43 |
1 |
2^22*3 |
E7(q) |
1 |
(A5+A1)' |
44 |
1 |
2^22*3 |
E7(q) |
1 |
(A5+A1)' |
45 |
1 |
2^18*3^2 |
E7(q) |
1 |
D5 |
46 |
1 |
2^18*3^2 |
E7(q) |
1 |
D5 |
47 |
1 |
2^22*3 |
E7(q) |
1 |
D6(a2)+A1 |
48 |
1 |
2^22 |
E7(q) |
1 |
D6(a2)+A1 |
49 |
1 |
2^21*3 |
E7(q) |
1 |
D6(a2)+A1 |
50 |
1 |
2^18*3 |
E7(q) |
1 |
D5+A1 |
51 |
1 |
2^18*3 |
E7(q) |
1 |
D5+A1 |
52 |
1 |
2^18*3 |
E7(q) |
1 |
D6(a1) |
53 |
1 |
2^18*3 |
E7(q) |
1 |
D6(a1) |
54 |
1 |
2^19 |
E7(q) |
1 |
A6 |
55 |
1 |
2^19*3 |
E7(q) |
1 |
A6 |
56 |
1 |
2^17 |
E7(q) |
1 |
D6(a1)+A1 |
57 |
1 |
2^14*3 |
E7(q) |
1 |
D6 |
58 |
1 |
2^14*3 |
E7(q) |
1 |
D6 |
59 |
1 |
2^15 |
E7(q) |
1 |
E6(a1) |
60 |
1 |
2^15*3 |
E7(q) |
1 |
E6(a1) |
61 |
1 |
2^12*3 |
E7(q) |
1 |
E6 |
62 |
1 |
2^12*3 |
E7(q) |
1 |
E6 |
63 |
1 |
2^14 |
E7(q) |
1 |
D6+A1 |
64 |
1 |
2^14 |
E7(q) |
1 |
D6+A1 |
65 |
1 |
2^12 |
E7(q) |
1 |
E7(a2) |
66 |
1 |
2^12 |
E7(q) |
1 |
E7(a2) |
67 |
1 |
2^10 |
E7(q) |
1 |
E7(a1) |
68 |
1 |
2^10 |
E7(q) |
1 |
E7(a1) |
69 |
1 |
2^9 |
E7(q) |
1 |
E7 |
70 |
1 |
2^9 |
E7(q) |
1 |
E7 |
71 |
1 |
2^9 |
E7(q) |
1 |
E7 |
72 |
1 |
2^9 |
E7(q) |
1 |
E7 |
73 |
1 |
2^18*3^10*5*7*11 |
2A5(q) + 2A2(q) |
1 |
[ [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1 ] ] |
74 |
1 |
2^18*3^8*5*7*11 |
2A5(q) + 2A2(q) |
1 |
[ [ 1, 1, 1, 1, 1, 1 ], [ 2, 1 ] ] |
75 |
1 |
2^17*3^7*5*7*11 |
2A5(q) + 2A2(q) |
1 |
[ [ 1, 1, 1, 1, 1, 1 ], [ 3 ] ] |
76 |
1 |
2^18*3^8*5 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 1, 1, 1, 1 ], [ 1, 1, 1 ] ] |
77 |
1 |
2^18*3^6*5 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 1, 1, 1, 1 ], [ 2, 1 ] ] |
78 |
1 |
2^17*3^5*5 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 1, 1, 1, 1 ], [ 3 ] ] |
79 |
1 |
2^17*3^6 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 1, 1 ], [ 1, 1, 1 ] ] |
80 |
1 |
2^17*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 1, 1 ], [ 2, 1 ] ] |
81 |
1 |
2^16*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 1, 1 ], [ 3 ] ] |
82 |
1 |
2^15*3^6 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 2 ], [ 1, 1, 1 ] ] |
83 |
1 |
2^15*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 2 ], [ 2, 1 ] ] |
84 |
1 |
2^14*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 2, 2, 2 ], [ 3 ] ] |
85 |
1 |
2^14*3^7 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 1, 1, 1 ], [ 1, 1, 1 ] ] |
86 |
1 |
2^14*3^5 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 1, 1, 1 ], [ 2, 1 ] ] |
87 |
1 |
2^13*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 1, 1, 1 ], [ 3 ] ] |
88 |
1 |
2^14*3^5 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 2, 1 ], [ 1, 1, 1 ] ] |
89 |
1 |
2^14*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 2, 1 ], [ 2, 1 ] ] |
90 |
1 |
2^13*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 2, 1 ], [ 3 ] ] |
91 |
1 |
2^12*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 1, 1, 1 ] ] |
92 |
1 |
2^12*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 2, 1 ] ] |
93 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 3 ] ] |
94 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 3 ] ] |
95 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 3, 3 ], [ 3 ] ] |
96 |
1 |
2^11*3^5 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 1, 1 ], [ 1, 1, 1 ] ] |
97 |
1 |
2^11*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 1, 1 ], [ 2, 1 ] ] |
98 |
1 |
2^10*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 1, 1 ], [ 3 ] ] |
99 |
1 |
2^11*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 2 ], [ 1, 1, 1 ] ] |
100 |
1 |
2^11*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 2 ], [ 2, 1 ] ] |
101 |
1 |
2^10*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 4, 2 ], [ 3 ] ] |
102 |
1 |
2^9*3^4 |
2A5(q) + 2A2(q) |
1 |
[ [ 5, 1 ], [ 1, 1, 1 ] ] |
103 |
1 |
2^9*3^2 |
2A5(q) + 2A2(q) |
1 |
[ [ 5, 1 ], [ 2, 1 ] ] |
104 |
1 |
2^8*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 5, 1 ], [ 3 ] ] |
105 |
1 |
2^8*3^3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 1, 1, 1 ] ] |
106 |
1 |
2^8*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 2, 1 ] ] |
107 |
1 |
2^7*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 3 ] ] |
108 |
1 |
2^7*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 3 ] ] |
109 |
1 |
2^7*3 |
2A5(q) + 2A2(q) |
1 |
[ [ 6 ], [ 3 ] ] |
110 |
1 |
2^36*3^11*5^2*7^2*11*13*17*19 |
2E6(q) |
phi2 |
- |
111 |
1 |
2^36*3^8*5*7*11 |
2E6(q) |
phi2 |
A1 |
112 |
1 |
2^33*3^6*5*7 |
2E6(q) |
phi2 |
2A1 |
113 |
1 |
2^31*3^5 |
2E6(q) |
phi2 |
3A1 |
114 |
1 |
2^27*3^7 |
2E6(q) |
phi2 |
A2 |
115 |
1 |
2^27*3^4*5*7 |
2E6(q) |
phi2 |
A2 |
116 |
1 |
2^26*3^5 |
2E6(q) |
phi2 |
A2+A1 |
117 |
1 |
2^22*3^4*7 |
2E6(q) |
phi2 |
2A2 |
118 |
1 |
2^25*3^3 |
2E6(q) |
phi2 |
A2+2A1 |
119 |
1 |
2^19*3^4*5 |
2E6(q) |
phi2 |
A3 |
120 |
1 |
2^22*3^2 |
2E6(q) |
phi2 |
2A2+A1 |
121 |
1 |
2^19*3^3 |
2E6(q) |
phi2 |
A3+A1 |
122 |
1 |
2^19*3^4 |
2E6(q) |
phi2 |
D4(a1) |
123 |
1 |
2^19*3^2 |
2E6(q) |
phi2 |
D4(a1) |
124 |
1 |
2^18*3^3 |
2E6(q) |
phi2 |
D4(a1) |
125 |
1 |
2^15*3^3 |
2E6(q) |
phi2 |
A4 |
126 |
1 |
2^14*3^4 |
2E6(q) |
phi2 |
D4 |
127 |
1 |
2^14*3^4 |
2E6(q) |
phi2 |
D4 |
128 |
1 |
2^15*3^2 |
2E6(q) |
phi2 |
A4+A1 |
129 |
1 |
2^13*3^2 |
2E6(q) |
phi2 |
D5(a1) |
130 |
1 |
2^12*3^2 |
2E6(q) |
phi2 |
A5 |
131 |
1 |
2^13*3 |
2E6(q) |
phi2 |
A5+A1 |
132 |
1 |
2^13*3 |
2E6(q) |
phi2 |
A5+A1 |
133 |
1 |
2^10*3^2 |
2E6(q) |
phi2 |
D5 |
134 |
1 |
2^10*3^2 |
2E6(q) |
phi2 |
D5 |
135 |
1 |
2^8*3 |
2E6(q) |
phi2 |
E6(a1) |
136 |
1 |
2^7*3 |
2E6(q) |
phi2 |
E6 |
137 |
1 |
2^7*3 |
2E6(q) |
phi2 |
E6 |
138 |
1 |
2^21*3^8*5^2*7*11*17 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 1, 1 ] ] |
139 |
1 |
2^21*3^7*5^2*7*11*17 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 2 ] ] |
140 |
1 |
2^21*3^7*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
141 |
1 |
2^21*3^6*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
142 |
1 |
2^18*3^6*5*7 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 1, 1 ] ] |
143 |
1 |
2^18*3^5*5*7 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 2 ] ] |
144 |
1 |
2^19*3^5*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
145 |
1 |
2^19*3^4*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
146 |
1 |
2^18*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 1 ] ], [ 1, 1 ] ] |
147 |
1 |
2^18*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 2, 2, 2, 2, 1, 1 ], [ -1, 1 ] ], [ 2 ] ] |
148 |
1 |
2^16*3^5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
149 |
1 |
2^16*3^3*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
150 |
1 |
2^16*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
151 |
1 |
2^16*3^2*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 1, 1, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
152 |
1 |
2^15*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 0, -1 ] ], [ 1, 1 ] ] |
153 |
1 |
2^15*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 0, -1 ] ], [ 2 ] ] |
154 |
1 |
2^12*3^4*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
155 |
1 |
2^12*3^3*5 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 2 ] ] |
156 |
1 |
2^14*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 1, -1 ] ], [ 1, 1 ] ] |
157 |
1 |
2^14*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 3, 3, 2, 2 ], [ -1, 1, -1 ] ], [ 2 ] ] |
158 |
1 |
2^12*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 2, 2 ], [ -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
159 |
1 |
2^12*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 2, 2, 2 ], [ -1, 1, -1, 1 ] ], [ 2 ] ] |
160 |
1 |
2^11*3^4 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 0 ] ], [ 1, 1 ] ] |
161 |
1 |
2^11*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 0 ] ], [ 2 ] ] |
162 |
1 |
2^12*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
163 |
1 |
2^12*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
164 |
1 |
2^12*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
165 |
1 |
2^12*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 4, 4, 1, 1 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
166 |
1 |
2^9*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 5, 5 ], [ -1, -1, -1, -1, -1 ] ], [ 1, 1 ] ] |
167 |
1 |
2^9*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 5, 5 ], [ -1, -1, -1, -1, -1 ] ], [ 2 ] ] |
168 |
1 |
2^9*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
169 |
1 |
2^9*3^3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
170 |
1 |
2^9*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
171 |
1 |
2^9*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 2, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
172 |
1 |
2^8*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 4 ], [ -1, -1, -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
173 |
1 |
2^8*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 6, 4 ], [ -1, -1, -1, 1, -1, 1 ] ], [ 2 ] ] |
174 |
1 |
2^7*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
175 |
1 |
2^7*3^2 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
176 |
1 |
2^7*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 2 ] ] |
177 |
1 |
2^7*3 |
2D5(q) + A1(q) |
phi2 |
[ [ [ 8, 2 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ], [ 2 ] ] |
178 |
1 |
2^9*3^6*7*19 |
2A2(q3) |
phi2 |
[ 1, 1, 1 ] |
179 |
1 |
2^9*3^3 |
2A2(q3) |
phi2 |
[ 2, 1 ] |
180 |
1 |
2^6*3^2 |
2A2(q3) |
phi2 |
[ 3 ] |
181 |
1 |
2^6*3^2 |
2A2(q3) |
phi2 |
[ 3 ] |
182 |
1 |
2^6*3^2 |
2A2(q3) |
phi2 |
[ 3 ] |
183 |
1 |
2^21*3^9*5*7*11*43 |
2A6(q) |
phi2 |
[ 1, 1, 1, 1, 1, 1, 1 ] |
184 |
1 |
2^21*3^7*5*11 |
2A6(q) |
phi2 |
[ 2, 1, 1, 1, 1, 1 ] |
185 |
1 |
2^20*3^6 |
2A6(q) |
phi2 |
[ 2, 2, 1, 1, 1 ] |
186 |
1 |
2^16*3^6*5 |
2A6(q) |
phi2 |
[ 3, 1, 1, 1, 1 ] |
187 |
1 |
2^18*3^5 |
2A6(q) |
phi2 |
[ 2, 2, 2, 1 ] |
188 |
1 |
2^16*3^4 |
2A6(q) |
phi2 |
[ 3, 2, 1, 1 ] |
189 |
1 |
2^15*3^3 |
2A6(q) |
phi2 |
[ 3, 2, 2 ] |
190 |
1 |
2^12*3^5 |
2A6(q) |
phi2 |
[ 4, 1, 1, 1 ] |
191 |
1 |
2^13*3^3 |
2A6(q) |
phi2 |
[ 3, 3, 1 ] |
192 |
1 |
2^12*3^3 |
2A6(q) |
phi2 |
[ 4, 2, 1 ] |
193 |
1 |
2^11*3^2 |
2A6(q) |
phi2 |
[ 4, 3 ] |
194 |
1 |
2^9*3^3 |
2A6(q) |
phi2 |
[ 5, 1, 1 ] |
195 |
1 |
2^9*3^2 |
2A6(q) |
phi2 |
[ 5, 2 ] |
196 |
1 |
2^7*3^2 |
2A6(q) |
phi2 |
[ 6, 1 ] |
197 |
1 |
2^6*3 |
2A6(q) |
phi2 |
[ 7 ] |
198 |
1 |
2^30*3^9*5^2*7^2*11*17*31 |
D6(q) |
phi2 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
199 |
1 |
2^30*3^7*5^2*7 |
D6(q) |
phi2 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 0 ] ] |
200 |
1 |
2^26*3^6*5^2*7*17 |
D6(q) |
phi2 |
[ [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1, 1 ] ] |
201 |
1 |
2^28*3^5*5 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
202 |
1 |
2^24*3^5*5*7 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2 ], [ -1, 0 ], '+' ] |
203 |
1 |
2^24*3^5*5*7 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2 ], [ -1, 0 ], '-' ] |
204 |
1 |
2^26*3^4*5 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ] |
205 |
1 |
2^23*3^3*5*7 |
D6(q) |
phi2 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
206 |
1 |
2^23*3^6*5 |
D6(q) |
phi2 |
[ [ 3, 3, 1, 1, 1, 1, 1, 1 ], [ -1, -1, -1 ] ] |
207 |
1 |
2^24*3^3*5 |
D6(q) |
phi2 |
[ [ 2, 2, 2, 2, 2, 2 ], [ -1, 1 ] ] |
208 |
1 |
2^18*3^5*5*7 |
D6(q) |
phi2 |
[ [ 4, 2, 1, 1, 1, 1, 1, 1 ], [ -1, 1, -1, 1 ] ] |
209 |
1 |
2^23*3^2 |
D6(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 0, -1 ] ] |
210 |
1 |
2^23*3^4 |
D6(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 0, -1 ] ] |
211 |
1 |
2^20*3^3 |
D6(q) |
phi2 |
[ [ 3, 3, 2, 2, 1, 1 ], [ -1, 1, -1 ] ] |
212 |
1 |
2^18*3^3 |
D6(q) |
phi2 |
[ [ 3, 3, 3, 3 ], [ -1, -1, -1 ] ] |
213 |
1 |
2^18*3^3 |
D6(q) |
phi2 |
[ [ 4, 2, 2, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
214 |
1 |
2^16*3^4 |
D6(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 0 ] ] |
215 |
1 |
2^17*3^3 |
D6(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
216 |
1 |
2^17*3^2*5 |
D6(q) |
phi2 |
[ [ 4, 4, 1, 1, 1, 1 ], [ -1, -1, -1, 1 ] ] |
217 |
1 |
2^16*3^3 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 0, -1, 0 ], '+' ] |
218 |
1 |
2^16*3^3 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 0, -1, 0 ], '-' ] |
219 |
1 |
2^16*3^2 |
D6(q) |
phi2 |
[ [ 4, 3, 3, 2 ], [ -1, 1, -1, 1 ] ] |
220 |
1 |
2^16*3^2 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 0, -1, 1 ] ] |
221 |
1 |
2^16*3^2 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 1, -1, 0 ] ] |
222 |
1 |
2^13*3^3*5 |
D6(q) |
phi2 |
[ [ 6, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
223 |
1 |
2^13*3^3*5 |
D6(q) |
phi2 |
[ [ 6, 2, 1, 1, 1, 1 ], [ -1, 1, -1, -1, -1, 1 ] ] |
224 |
1 |
2^16*3 |
D6(q) |
phi2 |
[ [ 4, 4, 2, 2 ], [ -1, 1, -1, 1 ] ] |
225 |
1 |
2^13*3 |
D6(q) |
phi2 |
[ [ 5, 5, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
226 |
1 |
2^13*3^3 |
D6(q) |
phi2 |
[ [ 5, 5, 1, 1 ], [ -1, -1, -1, -1, -1 ] ] |
227 |
1 |
2^13*3^2 |
D6(q) |
phi2 |
[ [ 6, 2, 2, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
228 |
1 |
2^13*3^2 |
D6(q) |
phi2 |
[ [ 6, 2, 2, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
229 |
1 |
2^12*3 |
D6(q) |
phi2 |
[ [ 6, 4, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
230 |
1 |
2^12*3^2 |
D6(q) |
phi2 |
[ [ 6, 4, 1, 1 ], [ -1, -1, -1, 1, -1, 1 ] ] |
231 |
1 |
2^10*3^2 |
D6(q) |
phi2 |
[ [ 6, 6 ], [ -1, -1, -1, -1, -1, 0 ], '+' ] |
232 |
1 |
2^10*3^2 |
D6(q) |
phi2 |
[ [ 6, 6 ], [ -1, -1, -1, -1, -1, 0 ], '-' ] |
233 |
1 |
2^10*3 |
D6(q) |
phi2 |
[ [ 6, 6 ], [ -1, -1, -1, -1, -1, 1 ] ] |
234 |
1 |
2^9*3^2 |
D6(q) |
phi2 |
[ [ 8, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
235 |
1 |
2^9*3^2 |
D6(q) |
phi2 |
[ [ 8, 2, 1, 1 ], [ -1, 1, -1, -1, -1, -1, -1, 1 ] ] |
236 |
1 |
2^9*3 |
D6(q) |
phi2 |
[ [ 8, 4 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
237 |
1 |
2^9*3 |
D6(q) |
phi2 |
[ [ 8, 4 ], [ -1, -1, -1, 1, -1, -1, -1, 1 ] ] |
238 |
1 |
2^7*3 |
D6(q) |
phi2 |
[ [ 10, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
239 |
1 |
2^7*3 |
D6(q) |
phi2 |
[ [ 10, 2 ], [ -1, 1, -1, -1, -1, -1, -1, -1, -1, 1 ] ] |
240 |
1 |
2^6*3^3*7^3 |
A2(q) + A1(q3) |
phi3 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
241 |
1 |
2^6*3*7^2 |
A2(q) + A1(q3) |
phi3 |
[ [ 1, 1, 1 ], [ 2 ] ] |
242 |
1 |
2^6*3^2*7^2 |
A2(q) + A1(q3) |
phi3 |
[ [ 2, 1 ], [ 1, 1 ] ] |
243 |
1 |
2^6*7 |
A2(q) + A1(q3) |
phi3 |
[ [ 2, 1 ], [ 2 ] ] |
244 |
1 |
2^5*3^2*7^2 |
A2(q) + A1(q3) |
phi3 |
[ [ 3 ], [ 1, 1 ] ] |
245 |
1 |
2^5*7 |
A2(q) + A1(q3) |
phi3 |
[ [ 3 ], [ 2 ] ] |
246 |
1 |
2^13*3^5*5^2*7*17 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 1, 1 ] ] |
247 |
1 |
2^13*3^4*5^2*7*17 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ], [ 2 ] ] |
248 |
1 |
2^13*3^3*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 1, 1 ] ] |
249 |
1 |
2^13*3^2*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ], [ 2 ] ] |
250 |
1 |
2^11*3^3*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 1, 1 ] ] |
251 |
1 |
2^11*3^2*5^2 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ], [ 2 ] ] |
252 |
1 |
2^11*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 1, 1 ] ] |
253 |
1 |
2^11*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 2, 2, 2, 2 ], [ -1, 1 ] ], [ 2 ] ] |
254 |
1 |
2^10*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
255 |
1 |
2^10*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 1, 1 ] ] |
256 |
1 |
2^10*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
257 |
1 |
2^10*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ], [ 2 ] ] |
258 |
1 |
2^7*3^2*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 1, 1 ] ] |
259 |
1 |
2^7*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ], [ 2 ] ] |
260 |
1 |
2^7*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
261 |
1 |
2^7*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 4, 4 ], [ -1, -1, -1, 1 ] ], [ 2 ] ] |
262 |
1 |
2^6*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
263 |
1 |
2^6*3*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 1, 1 ] ] |
264 |
1 |
2^6*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
265 |
1 |
2^6*5 |
2D4(q) + A1(q) |
phi4 |
[ [ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ], [ 2 ] ] |
266 |
1 |
2^15*3^4*5*7^3*31 |
A5(q) |
phi3 |
[ 1, 1, 1, 1, 1, 1 ] |
267 |
1 |
2^15*3^2*5*7^2 |
A5(q) |
phi3 |
[ 2, 1, 1, 1, 1 ] |
268 |
1 |
2^14*3^2*7 |
A5(q) |
phi3 |
[ 2, 2, 1, 1 ] |
269 |
1 |
2^12*3*7^2 |
A5(q) |
phi3 |
[ 2, 2, 2 ] |
270 |
1 |
2^11*3*7^2 |
A5(q) |
phi3 |
[ 3, 1, 1, 1 ] |
271 |
1 |
2^11*7 |
A5(q) |
phi3 |
[ 3, 2, 1 ] |
272 |
1 |
2^9*3*7 |
A5(q) |
phi3 |
[ 3, 3 ] |
273 |
1 |
2^8*3*7 |
A5(q) |
phi3 |
[ 4, 1, 1 ] |
274 |
1 |
2^8*7 |
A5(q) |
phi3 |
[ 4, 2 ] |
275 |
1 |
2^6*7 |
A5(q) |
phi3 |
[ 5, 1 ] |
276 |
1 |
2^5*7 |
A5(q) |
phi3 |
[ 6 ] |
277 |
1 |
2^10*3^7*5*11 |
2A4(q) |
phi2 phi6 |
[ 1, 1, 1, 1, 1 ] |
278 |
1 |
2^10*3^6 |
2A4(q) |
phi2 phi6 |
[ 2, 1, 1, 1 ] |
279 |
1 |
2^9*3^4 |
2A4(q) |
phi2 phi6 |
[ 2, 2, 1 ] |
280 |
1 |
2^7*3^4 |
2A4(q) |
phi2 phi6 |
[ 3, 1, 1 ] |
281 |
1 |
2^7*3^3 |
2A4(q) |
phi2 phi6 |
[ 3, 2 ] |
282 |
1 |
2^5*3^3 |
2A4(q) |
phi2 phi6 |
[ 4, 1 ] |
283 |
1 |
2^4*3^2 |
2A4(q) |
phi2 phi6 |
[ 5 ] |
284 |
1 |
2^4*3^4*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 1, 1 ], [ 1, 1 ] ] |
285 |
1 |
2^4*3^3*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 1, 1 ], [ 2 ] ] |
286 |
1 |
2^4*3^3*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 2 ], [ 1, 1 ] ] |
287 |
1 |
2^4*3^2*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 1, 1 ], [ 2 ], [ 2 ] ] |
288 |
1 |
2^4*3^3*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 1, 1 ], [ 1, 1 ] ] |
289 |
1 |
2^4*3^2*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 1, 1 ], [ 2 ] ] |
290 |
1 |
2^4*3^2*5^2 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 2 ], [ 1, 1 ] ] |
291 |
1 |
2^4*3*5 |
A1(q) + A1(q) + A1(q2) |
phi2 phi4 |
[ [ 2 ], [ 2 ], [ 2 ] ] |
292 |
1 |
2^4*3^5*7 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 1, 1 ], [ 1, 1 ] ] |
293 |
1 |
2^4*3^3 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 1, 1 ], [ 2 ] ] |
294 |
1 |
2^4*3^4*7 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 2 ], [ 1, 1 ] ] |
295 |
1 |
2^4*3^2 |
A1(q) + A1(q3) |
phi2 phi6 |
[ [ 2 ], [ 2 ] ] |
296 |
1 |
2^6*3^4*5*7^2 |
A2(q2) |
phi2 phi3 |
[ 1, 1, 1 ] |
297 |
1 |
2^6*3^2*7 |
A2(q2) |
phi2 phi3 |
[ 2, 1 ] |
298 |
1 |
2^4*3*7 |
A2(q2) |
phi2 phi3 |
[ 3 ] |
299 |
1 |
2^12*3^5*5^2*7*17 |
2D4(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
300 |
1 |
2^12*3^3*5^2 |
2D4(q) |
phi2 phi4 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
301 |
1 |
2^10*3^3*5^2 |
2D4(q) |
phi2 phi4 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 1 ] ] |
302 |
1 |
2^10*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
303 |
1 |
2^9*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
304 |
1 |
2^9*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
305 |
1 |
2^6*3^2*5 |
2D4(q) |
phi2 phi4 |
[ [ 4, 2, 1, 1 ], [ -1, 1, -1, 1 ] ] |
306 |
1 |
2^6*3*5 |
2D4(q) |
phi2 phi4 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
307 |
1 |
2^5*3*5 |
2D4(q) |
phi2 phi4 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
308 |
1 |
2^5*3*5 |
2D4(q) |
phi2 phi4 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
309 |
1 |
2^12*3^4*7^3*13 |
3D4(q) |
phi1 phi3 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
310 |
1 |
2^12*3^2*7^2 |
3D4(q) |
phi1 phi3 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
311 |
1 |
2^10*3*7 |
3D4(q) |
phi1 phi3 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
312 |
1 |
2^9*7^2 |
3D4(q) |
phi1 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
313 |
1 |
2^9*3*7 |
3D4(q) |
phi1 phi3 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
314 |
1 |
2^6*7 |
3D4(q) |
phi1 phi3 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
315 |
1 |
2^5*7 |
3D4(q) |
phi1 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
316 |
1 |
2^5*7 |
3D4(q) |
phi1 phi3 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
317 |
1 |
2^12*3^6*7^2*13 |
3D4(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ -1 ] ] |
318 |
1 |
2^12*3^4*7 |
3D4(q) |
phi2 phi6 |
[ [ 2, 2, 1, 1, 1, 1 ], [ -1, 0 ] ] |
319 |
1 |
2^10*3^3 |
3D4(q) |
phi2 phi6 |
[ [ 2, 2, 2, 2 ], [ -1, 1 ] ] |
320 |
1 |
2^9*3^2*7 |
3D4(q) |
phi2 phi6 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
321 |
1 |
2^9*3^3 |
3D4(q) |
phi2 phi6 |
[ [ 3, 3, 1, 1 ], [ -1, -1, -1 ] ] |
322 |
1 |
2^6*3^2 |
3D4(q) |
phi2 phi6 |
[ [ 4, 4 ], [ -1, -1, -1, 1 ] ] |
323 |
1 |
2^5*3^2 |
3D4(q) |
phi2 phi6 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
324 |
1 |
2^5*3^2 |
3D4(q) |
phi2 phi6 |
[ [ 6, 2 ], [ -1, 1, -1, -1, -1, 1 ] ] |
325 |
1 |
2^7*3^4*5^2*7 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 1, 1 ] ] |
326 |
1 |
2^7*3^3*5^2*7 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 1, 1, 1, 1 ], [ 2 ] ] |
327 |
1 |
2^7*3^3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 1, 1 ] ] |
328 |
1 |
2^7*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 1, 1 ], [ 2 ] ] |
329 |
1 |
2^6*3^3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 2 ], [ 1, 1 ] ] |
330 |
1 |
2^6*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 2, 2 ], [ 2 ] ] |
331 |
1 |
2^5*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 3, 1 ], [ 1, 1 ] ] |
332 |
1 |
2^5*3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 3, 1 ], [ 2 ] ] |
333 |
1 |
2^4*3^2*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 4 ], [ 1, 1 ] ] |
334 |
1 |
2^4*3*5 |
A3(q) + A1(q) |
phi2 phi4 |
[ [ 4 ], [ 2 ] ] |
335 |
1 |
2^7*3^7*5 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1 ], [ 1, 1 ] ] |
336 |
1 |
2^7*3^6*5 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 1, 1, 1, 1 ], [ 2 ] ] |
337 |
1 |
2^7*3^5 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 1, 1 ], [ 1, 1 ] ] |
338 |
1 |
2^7*3^4 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 1, 1 ], [ 2 ] ] |
339 |
1 |
2^6*3^4 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 2 ], [ 1, 1 ] ] |
340 |
1 |
2^6*3^3 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 2, 2 ], [ 2 ] ] |
341 |
1 |
2^5*3^4 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 3, 1 ], [ 1, 1 ] ] |
342 |
1 |
2^5*3^3 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 3, 1 ], [ 2 ] ] |
343 |
1 |
2^4*3^3 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 4 ], [ 1, 1 ] ] |
344 |
1 |
2^4*3^2 |
2A3(q) + A1(q) |
phi2 phi6 |
[ [ 4 ], [ 2 ] ] |
345 |
1 |
2^4*3^7 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
346 |
1 |
2^4*3^6 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 1, 1, 1 ], [ 2 ] ] |
347 |
1 |
2^4*3^5 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 2, 1 ], [ 1, 1 ] ] |
348 |
1 |
2^4*3^4 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 2, 1 ], [ 2 ] ] |
349 |
1 |
2^3*3^4 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 3 ], [ 1, 1 ] ] |
350 |
1 |
2^3*3^3 |
2A2(q) + A1(q) |
phi2^2 phi6 |
[ [ 3 ], [ 2 ] ] |
351 |
1 |
2^4*3^5*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 1, 1, 1 ], [ 1, 1 ] ] |
352 |
1 |
2^4*3^4*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 1, 1, 1 ], [ 2 ] ] |
353 |
1 |
2^4*3^3*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 2, 1 ], [ 1, 1 ] ] |
354 |
1 |
2^4*3^2*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 2, 1 ], [ 2 ] ] |
355 |
1 |
2^3*3^2*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 3 ], [ 1, 1 ] ] |
356 |
1 |
2^3*3*5 |
2A2(q) + A1(q) |
phi1 phi2 phi4 |
[ [ 3 ], [ 2 ] ] |
357 |
1 |
2^3*3^4*5^2 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 1, 1 ], [ 1, 1 ] ] |
358 |
1 |
2^3*3^3*5 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 1, 1 ], [ 2 ] ] |
359 |
1 |
2^3*3^3*5^2 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 2 ], [ 1, 1 ] ] |
360 |
1 |
2^3*3^2*5 |
A1(q) + A1(q2) |
phi2^2 phi4 |
[ [ 2 ], [ 2 ] ] |
361 |
1 |
2^3*3^3*7^2 |
A1(q3) |
phi1 phi2 phi3 |
[ 1, 1 ] |
362 |
1 |
2^3*3*7 |
A1(q3) |
phi1 phi2 phi3 |
[ 2 ] |
363 |
1 |
2^6*3^4*5^2*7 |
A3(q) |
phi2^2 phi4 |
[ 1, 1, 1, 1 ] |
364 |
1 |
2^6*3^3*5 |
A3(q) |
phi2^2 phi4 |
[ 2, 1, 1 ] |
365 |
1 |
2^5*3^3*5 |
A3(q) |
phi2^2 phi4 |
[ 2, 2 ] |
366 |
1 |
2^4*3^2*5 |
A3(q) |
phi2^2 phi4 |
[ 3, 1 ] |
367 |
1 |
2^3*3^2*5 |
A3(q) |
phi2^2 phi4 |
[ 4 ] |
368 |
1 |
2^6*3^3*5*7^2 |
A3(q) |
phi1 phi2 phi3 |
[ 1, 1, 1, 1 ] |
369 |
1 |
2^6*3^2*7 |
A3(q) |
phi1 phi2 phi3 |
[ 2, 1, 1 ] |
370 |
1 |
2^5*3^2*7 |
A3(q) |
phi1 phi2 phi3 |
[ 2, 2 ] |
371 |
1 |
2^4*3*7 |
A3(q) |
phi1 phi2 phi3 |
[ 3, 1 ] |
372 |
1 |
2^3*3*7 |
A3(q) |
phi1 phi2 phi3 |
[ 4 ] |
373 |
1 |
2^3*3^2*7*13 |
A1(q3) |
phi12 |
[ 1, 1 ] |
374 |
1 |
2^3*13 |
A1(q3) |
phi12 |
[ 2 ] |
375 |
1 |
2^3*3^3*5*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 1, 1 ], [ 1, 1 ] ] |
376 |
1 |
2^3*3^2*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 1, 1 ], [ 2 ] ] |
377 |
1 |
2^3*3^2*5*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 2 ], [ 1, 1 ] ] |
378 |
1 |
2^3*3*7 |
A1(q) + A1(q2) |
phi1 phi2 phi3 |
[ [ 2 ], [ 2 ] ] |
379 |
1 |
2^3*3^3*7^2 |
A1(q3) |
phi1 phi2 phi3 |
[ 1, 1 ] |
380 |
1 |
2^3*3*7 |
A1(q3) |
phi1 phi2 phi3 |
[ 2 ] |
381 |
2 |
2^3*3^2*5*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 1, 1 ], [ 1, 1 ] ] |
382 |
2 |
2^3*3*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 1, 1 ], [ 2 ] ] |
383 |
2 |
2^3*3*5*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 2 ], [ 1, 1 ] ] |
384 |
2 |
2^3*17 |
A1(q) + A1(q2) |
phi8 |
[ [ 2 ], [ 2 ] ] |
385 |
2 |
2^2*3^2*5*17 |
A1(q2) |
phi2 phi8 |
[ 1, 1 ] |
386 |
2 |
2^2*3*17 |
A1(q2) |
phi2 phi8 |
[ 2 ] |
387 |
3 |
2^3*3*7*31 |
A2(q) |
phi1 phi5 |
[ 1, 1, 1 ] |
388 |
3 |
2^3*31 |
A2(q) |
phi1 phi5 |
[ 2, 1 ] |
389 |
3 |
2^2*31 |
A2(q) |
phi1 phi5 |
[ 3 ] |
390 |
3 |
2^3*3^4*11 |
2A2(q) |
phi2 phi10 |
[ 1, 1, 1 ] |
391 |
3 |
2^3*3^2*11 |
2A2(q) |
phi2 phi10 |
[ 2, 1 ] |
392 |
3 |
2^2*3*11 |
2A2(q) |
phi2 phi10 |
[ 3 ] |
393 |
4 |
2^3*3^3*7^2 |
A2(q) |
phi2 phi3 phi6 |
[ 1, 1, 1 ] |
394 |
4 |
2^3*3^2*7 |
A2(q) |
phi2 phi3 phi6 |
[ 2, 1 ] |
395 |
4 |
2^2*3^2*7 |
A2(q) |
phi2 phi3 phi6 |
[ 3 ] |
396 |
1 |
2^3*3^4*7 |
2A2(q) |
phi1 phi3 phi6 |
[ 1, 1, 1 ] |
397 |
1 |
2^3*3^2*7 |
2A2(q) |
phi1 phi3 phi6 |
[ 2, 1 ] |
398 |
1 |
2^2*3*7 |
2A2(q) |
phi1 phi3 phi6 |
[ 3 ] |
399 |
1 |
2^3*3^5*5 |
2A2(q) |
phi1 phi2^2 phi4 |
[ 1, 1, 1 ] |
400 |
1 |
2^3*3^3*5 |
2A2(q) |
phi1 phi2^2 phi4 |
[ 2, 1 ] |
401 |
1 |
2^2*3^2*5 |
2A2(q) |
phi1 phi2^2 phi4 |
[ 3 ] |
402 |
6 |
2*3^3*11 |
A1(q) |
phi2^2 phi10 |
[ 1, 1 ] |
403 |
6 |
2*3^2*11 |
A1(q) |
phi2^2 phi10 |
[ 2 ] |
404 |
3 |
2*3^2*5*7 |
A1(q) |
phi1 phi2 phi3 phi4 |
[ 1, 1 ] |
405 |
3 |
2*3*5*7 |
A1(q) |
phi1 phi2 phi3 phi4 |
[ 2 ] |
406 |
1 |
2*3^3*5 |
A1(q) |
phi1 phi2 phi4 phi6 |
[ 1, 1 ] |
407 |
1 |
2*3^2*5 |
A1(q) |
phi1 phi2 phi4 phi6 |
[ 2 ] |
408 |
3 |
2*3^3*7 |
A1(q) |
phi1 phi2 phi3 phi6 |
[ 1, 1 ] |
409 |
3 |
2*3^2*7 |
A1(q) |
phi1 phi2 phi3 phi6 |
[ 2 ] |
410 |
2 |
2*3^2*17 |
A1(q) |
phi1 phi2 phi8 |
[ 1, 1 ] |
411 |
2 |
2*3*17 |
A1(q) |
phi1 phi2 phi8 |
[ 2 ] |
412 |
4 |
2*3*5*17 |
A1(q) |
phi4 phi8 |
[ 1, 1 ] |
413 |
4 |
2*5*17 |
A1(q) |
phi4 phi8 |
[ 2 ] |
414 |
4 |
3^3*7 |
A0(q) |
phi1 phi2^2 phi3 phi6 |
[ [ 1 ], 1 ] |
415 |
9 |
127 |
A0(q) |
phi1 phi7 |
[ [ 1 ], 1 ] |
416 |
2 |
3^2*17 |
A0(q) |
phi1 phi2^2 phi8 |
[ [ 1 ], 1 ] |
417 |
4 |
73 |
A0(q) |
phi1 phi9 |
[ [ 1 ], 1 ] |
418 |
3 |
3^2*5*7 |
A0(q) |
phi1 phi2^2 phi3 phi4 |
[ [ 1 ], 1 ] |
419 |
1 |
3^3*5 |
A0(q) |
phi1 phi2^2 phi4 phi6 |
[ [ 1 ], 1 ] |
420 |
3 |
7*13 |
A0(q) |
phi1 phi3 phi12 |
[ [ 1 ], 1 ] |
421 |
6 |
7*31 |
A0(q) |
phi1 phi3 phi5 |
[ [ 1 ], 1 ] |
422 |
1 |
3^3*11 |
A0(q) |
phi2^3 phi10 |
[ [ 1 ], 1 ] |
423 |
1 |
3^2*7^2 |
A0(q) |
phi2 phi3^2 phi6 |
[ [ 1 ], 1 ] |
424 |
9 |
3*43 |
A0(q) |
phi2 phi14 |
[ [ 1 ], 1 ] |
425 |
4 |
3*5*17 |
A0(q) |
phi2 phi4 phi8 |
[ [ 1 ], 1 ] |
426 |
9 |
3^2*19 |
A0(q) |
phi2 phi18 |
[ [ 1 ], 1 ] |
427 |
3 |
3*31 |
A0(q) |
phi1^2 phi2 phi5 |
[ [ 1 ], 1 ] |
428 |
4 |
3^2*13 |
A0(q) |
phi2 phi6 phi12 |
[ [ 1 ], 1 ] |
429 |
2 |
3^2*11 |
A0(q) |
phi2 phi6 phi10 |
[ [ 1 ], 1 ] |
The following table lists the degrees of the complex irreducible
characters of E7(2).
There are 531 irreducible characters.