The GAP 4 Manual - Full Index A
_
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
- A, Attribute mark-up E 2.5 
- A First Attempt to Implement Elements of Residue Class Rings P 5.1 
- A First Session with GAP T 2.0 
- A Second Attempt to Implement Elements of Residue Class Rings P 5.3 
- Abelian Invariants for Subgroups R 45.14 
- abelian number field R 58.2 
- abelian number fields, Galois group R 58.3 
- Abelian Number Fields R 58.0 
- AbelianGroup R 48.1.3 
- AbelianInvariants, for character tables R 69.8 
- AbelianInvariants, for groups R 37.15.1 
- AbelianInvariantsMultiplier R 37.23.3 
- AbelianInvariantsNormalClosureFpGroup R 45.14.4 
- AbelianInvariantsNormalClosureFpGroupRrs R 45.14.5 
- AbelianInvariantsSubgroupFpGroup R 45.14.1 
- AbelianInvariantsSubgroupFpGroupMtc R 45.14.2 
- AbelianInvariantsSubgroupFpGroupRrs R 45.14.3 
- AbelianNumberField R 58.0 
- AbelianSubfactorAction R 39.7.3 
- About Functions T 2.6 
- About Group Actions R 39.1 
- About Programming in GAP P 1.0 
- About the GAP Reference Manual R 1.0 
- About the New Features Manual N 1.0 
- About: Extending GAP E 1.0 
- AbsInt R 14.1.6 
- absolute value of an integer R 14.1 
- AbsoluteValue R 18.1.6 
- abstract word R 34.1 
- AbstractWordTietzeWord R 46.4.2 
- accessing, record elements R 27.1 
- accessing, list elements R 21.3 
- Accessing a Module R 67.3 
- Accessing Record Elements R 27.1 
- Accessing Subgroups via Tables of Marks R 68.11 
- Accessing Weak Pointer Objects as Lists E 7.4 
- Acknowledgement T 10.0 
- Acknowledgements T 1.3 
- AClosestVectorCombinationsMatFFEVecFFE R 23.5.5 
- Acting OnRight and OnLeft R 42.6 
- ActingAlgebra R 60.10.13 
- ActingDomain R 39.11.3 
- action, on blocks R 39.2 
- action, on sets R 39.2 
- Action R 39.6.2 
- action, by conjugation R 39.2 
- Action of a group on itself R 39.7 
- Action on Subfactors Defined by a Pcgs R 43.14 
- ActionHomomorphism R 39.6.1 
- actions R 39.2 
- Actions of Groups T 5.2 
- Actions of Matrix Groups R 42.2 
- ActorOfExternalSet R 39.11.15 
- add, an element to a set R 21.19 
- Add R 21.4.4 
- AddCoeffs R 23.3.2 
- AddGenerator R 46.6.1 
- AddGenerators R 36.1.13 
- AddGeneratorsExtendSchreierTree R 41.10.10 
- AddHashEntry N 2.3.4 
- Adding a new Attribute P 4.5 
- Adding a new Operation P 4.4 
- Adding a new Representation P 4.6 
- Adding new Concepts P 4.8 
- addition R 4.12.1 
- addition, matrices R 24.2.1 
- addition, matrix and scalar R 24.2.2 
- addition, operation R 30.12.1 
- addition, rational functions R 64.2.1 
- addition, scalar and matrix R 24.2.2 
- addition, scalar and matrix list R 24.2.12 
- addition, scalar and vector R 23.1.2 
- addition, vector and scalar R 23.1.2 
- addition, vectors R 23.1.1 
- addition, list and non-list R 21.13 
- Addition of a Method P 4.1 
- Additive Arithmetic for Lists R 21.13 
- Additive Magmas R 53.0 
- AdditiveInverse R 30.10.9 
- AdditiveInverseAttr R 30.10.9 
- AdditiveInverseImmutable R 30.10.9 
- AdditiveInverseMutable R 30.10.9 
- AdditiveInverseOp R 30.10.9 
- AdditiveInverseSameMutability R 30.10.9 
- AdditiveInverseSM R 30.10.9 
- AdditiveNeutralElement R 53.3.5 
- AddRelator R 46.6.3 
- AddRowVector R 23.3.1 
- AddRule R 36.1.9 
- AddRuleReduced R 36.1.10 
- AddSet R 21.19.4 
- AdjointAssociativeAlgebra R 61.9.2 
- AdjointBasis R 60.8.5 
- AdjointMatrix R 61.9.1 
- AdjointModule R 60.10.19 
- administrator R 74.2 
- Advanced Features of GAP R 3.2 
- Advanced List Manipulations R 21.21 
- Advanced Methods for Dixon-Schneider Calculations R 69.14 
- AffineAction R 43.14.4 
- AffineActionLayer R 43.14.5 
- AffineOperation R 43.14.4 
- AffineOperationLayer R 43.14.5 
- Agemo R 37.13.2 
- AgGroup T 9.4 
- Algebra R 60.1.1 
- AlgebraByStructureConstants R 60.3.5 
- AlgebraGeneralMappingByImages R 60.9.1 
- AlgebraHomomorphismByImages R 60.9.2 
- AlgebraHomomorphismByImagesNC R 60.9.3 
- Algebraic extensions of fields R 65.0 
- Algebraic Structure T 7.2 
- AlgebraicExtension R 65.1.1 
- Algebras T 6.2 
- Algebras R 60.0 
- AlgebraWithOne R 60.1.2 
- AlgebraWithOneGeneralMappingByImages R 60.9.4 
- AlgebraWithOneHomomorphismByImages R 60.9.5 
- AlgebraWithOneHomomorphismByImagesNC R 60.9.6 
- AllBlocks R 39.10.4 
- AllIrreducibleSolvableGroups R 48.10.3 
- AllLibraryGroups R 48.5.1 
- ALLPKG R 74.3 
- ALLPKG E 4.2 
- AllPrimitiveGroups R 48.5 
- AllSmallGroups R 48.7.2 
- AllTransitiveGroups R 48.5 
- Alpha R 72.1.1 
- AlternatingGroup R 48.1.7 
- An Example -- Designing Arithmetic Operations P 6.0 
- An Example -- Residue Class Rings P 5.0 
- An Example of a GAP Package E 4.3 
- An Example of Advanced Dixon-Schneider Calculations R 69.16 
- and R 20.3.2 
- and, for filters R 13.2 R 20.3.3 
- ANFAutomorphism R 58.3.1 
- antisymmetric relation R 32.2 
- AntiSymmetricParts R 70.11.3 
- Append R 21.4.5 
- AppendTo, for streams R 10.4.4 
- AppendTo R 9.7.4 
- Apple R 73.12 
- Applicable Methods and Method Selection P 2.3 
- ApplicableMethod T 8.4 
- ApplicableMethod R 7.2 R 7.2.1 
- ApplicableMethodTypes R 7.2.1 
- Apply R 21.20.9 
- ApplyFunc T 9.4 
- ApplySimpleReflection R 61.7.18 
- ApproximateSuborbitsStabilizerPermGroup R 41.9.14 
- ARCH_IS_MAC R 73.15.2 
- ARCH_IS_UNIX R 73.15.1 
- ARCH_IS_WINDOWS R 73.15.3 
- arg, special function argument R 4.10 R 4.22 
- Arithmetic for External Representations of Polynomials R 64.21 
- Arithmetic for Lists R 21.11 
- Arithmetic Issues in the Implementation of New Kinds of Lists P 3.12 
- Arithmetic Operations for Class Functions R 70.4 
- Arithmetic Operations for Elements R 30.12 
- Arithmetic Operations for General Mappings R 31.5 
- Arithmetic Operators R 4.12 
- ArithmeticElementCreator P 4.12.1 
- Arrangements R 17.2.3 
- arrow notation for functions R 4.22.2 
- AsAlgebra R 60.8.7 
- AsAlgebraWithOne R 60.8.8 
- AsBinaryRelationOnPoints R 32.3.3 
- AsBlockMatrix R 24.14.1 
- AscendingChain R 37.16.16 
- AsDivisionRing R 56.1.9 
- AsDuplicateFreeList R 21.20.5 
- AsField R 56.1.9 
- AsFreeLeftModule R 55.3.3 
- AsGroup R 37.2.4 
- AsGroupGeneralMappingByImages R 38.1.5 
- AsLeftIdeal R 54.2.11 
- AsLeftModule R 55.1.5 
- AsList R 28.2.6 
- AsMagma R 33.2.10 
- AsMonoid R 50.0 
- AsPolynomial R 64.4.5 
- AsRightIdeal R 54.2.11 
- AsRing R 54.1.7 
- AsSemigroup R 49.0 
- Assert R 7.5.3 
- AssertionLevel R 7.5.2 
- Assertions R 7.5 
- AsSet R 28.2.8 
- AssignGeneratorVariables R 35.2.5 
- assignment, variable R 4.14.1 
- assignment T 2.4 
- assignment, to a list R 21.4 
- assignment, to a record R 27.2 
- Assignments R 4.14 
- AssignNiceMonomorphismAutomorphismGroup R 38.8.1 
- AssociatedPartition R 17.2.24 
- AssociatedReesMatrixSemigroupOfDClass R 49.6.10 
- Associates R 54.5.4 
- Associative Words R 35.0 
- associativity R 4.12 
- AssocWordByLetterRep R 35.6.9 
- AsSomething T 7.6 
- AsSortedList R 28.2.7 
- AsSSortedList R 28.2.8 
- AsStruct R 30.4.1 
- AsSubalgebra R 60.8.9 
- AsSubalgebraWithOne R 60.8.10 
- AsSubgroup R 37.3.4 
- AsSubgroupOfWholeGroupByQuotient R 45.12.3 
- AsSubmagma R 33.2.11 
- AsSubmonoid R 50.0 
- AsSubsemigroup R 49.0 
- AsSubspace R 59.1.4 
- AsSubstruct R 30.8.3 
- AsTransformation R 52.0 R 52.0 
- AsTransformationNC R 52.0 
- AsTwoSidedIdeal R 54.2.11 
- AsVectorSpace R 59.1.3 
- at exit functions R 6.7 
- ATLAS Irrationalities R 18.4 
- AtlasIrrationality R 18.4.6 
- atomic irrationalities R 18.4 
- Attributes R 13.5 
- Attributes T 8.1 
- Attributes and Operations for Algebras R 60.8 
- Attributes and Properties for (Near-)Additive Magmas R 53.3 
- Attributes and Properties for Collections R 28.3 
- Attributes and Properties for Magmas R 33.4 
- Attributes and Properties for Matrix Groups R 42.1 
- Attributes and Properties of Character Tables R 69.8 
- Attributes and Properties of Elements R 30.10 
- Attributes of and Operations on Equivalence Relations R 32.6 
- Attributes of Tables of Marks R 68.7 
- Attributes vs. Record Components T 9.8 
- AttributeValueNotSet R 13.6.3 
- AugmentationIdeal R 63.1.7 
- Augmented Coset Tables and Rewriting R 45.8 
- AugmentedCosetTableInWholeGroup R 45.8.1 
- AugmentedCosetTableMtc R 45.8.2 
- AugmentedCosetTableRrs R 45.8.3 
- Authors T 10.0 
- Authorship and Maintenance T 1.2 
- AUTOLOAD_PACKAGES R 74.3 
- automatic loading of GAP packages R 74.3 
- automorphism group, of number fields R 58.3 
- AutomorphismDomain R 38.7.2 
- AutomorphismGroup R 38.7.3 
- AutomorphismGroup, for groups with pcgs R 43.16 
- Automorphisms and Equivalence of Character Tables R 69.19 
- AutomorphismsOfTable R 69.8.8 
[Top]
[Up]
GAP 4 manual