The GAP 4 Manual - Full Index M
_
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
- m_N R 18.4 
- Macintosh R 73.12 
- MacOS R 73.12 
- Magma R 33.2.1 
- Magma Categories R 33.1 
- Magma Generation R 33.2 
- Magma Homomorphisms R 31.7 
- Magma Rings R 63.0 
- Magma Rings modulo Relations R 63.4 
- Magma Rings modulo the Span of a Zero Element R 63.5 
- MagmaByGenerators R 33.2.4 
- MagmaByMultiplicationTable R 33.3.1 
- MagmaElement R 33.3.4 
- MagmaHomomorphismByFunctionNC R 31.7.2 
- MagmaRingModuloSpanOfZero R 63.5.3 
- Magmas R 33.0 
- Magmas Defined by Multiplication Tables R 33.3 
- MagmaWithInverses R 33.2.3 
- MagmaWithInversesByGenerators R 33.2.6 
- MagmaWithInversesByMultiplicationTable R 33.3.3 
- MagmaWithOne R 33.2.2 
- MagmaWithOneByGenerators R 33.2.5 
- MagmaWithOneByMultiplicationTable R 33.3.2 
- Main Loop R 6.1 
- Main Loop and Break Loop R 6.0 
- MakeConfluent R 36.1.11 
- MakeHomChain N 5.2.5 
- MakeImmutable R 12.6.4 
- makeindex E 2.13 
- MAKElb11 R 69.21.1 
- MakeReadOnlyGlobal R 4.9.2 
- MakeReadWriteGlobal R 4.9.3 
- Making transformation semigroups R 49.1 
- Manual Conventions R 1.1 
- manual.bbl E 2.13 
- manual.bib E 2.13 
- manual.dvi E 2.13 
- manual.lab E 2.13 
- manual.mst E 2.13 
- manual.six E 2.13 
- manual.tex E 2.13 
- manualindex E 2.13 
- map, parametrized R 71.3 
- MappedWord R 34.3.1 
- MappingByFunction R 31.1.2 
- MappingPermListList R 40.4.3 
- Mappings R 31.0 
- Mappings that Respect Addition R 31.9 
- Mappings that Respect Multiplication R 31.8 
- Mappings which are Compatible with Algebraic Structures R 31.6 
- maps R 71.0 
- Maps Concerning Character Tables R 71.0 
- maps-to operator T 2.6 
- MarksTom R 68.7.1 
- MatAlgebra R 60.4.4 
- MatClassMultCoeffsCharTable R 69.10.8 
- mathematics alignments E 2.8 
- mathematics displays E 2.8 
- MathieuGroup R 48.1.9 
- MatLieAlgebra R 61.2.4 
- matrices, commutator R 24.2.11 
- matrices T 3.8 
- Matrices R 24.0 
- Matrices as Basis of a Row Space R 24.10 
- Matrices as Linear Mappings R 24.12 
- Matrices over Finite Fields R 24.13 
- Matrices Representing Linear Equations and the Gaussian Algorithm R 24.6 
- matrix automorphisms R 71.1 
- Matrix Constructions R 24.4 
- Matrix Groups R 42.0 
- Matrix Groups in Characteristic 0 R 42.5 
- matrix spaces R 59.8 
- MatrixAlgebra R 60.4.4 
- MatrixAutomorphisms R 69.19.1 
- MatrixByBlockMatrix R 24.14.3 
- MatrixLieAlgebra R 61.2.4 
- MatrixOfAction R 60.10.15 
- MatScalarProducts R 70.8.6 
- MatTom R 68.7.10 
- MaximalAbelianQuotient R 37.17.4 
- MaximalBlocks R 39.10.2 
- MaximalNormalSubgroups R 37.18.8 
- MaximalSubgroupClassReps R 37.18.5 
- MaximalSubgroups R 37.18.6 
- MaximalSubgroups, for groups with pcgs R 43.16 
- MaximalSubgroupsLattice R 37.19.3 
- MaximalSubgroupsTom R 68.9.12 
- Maximum R 21.20.11 
- MaximumList R 21.20.13 
- MeatAxe Modules R 67.1 
- meet strategy E 8.2 
- MeetEquivalenceRelations R 32.6.3 
- MeetMaps R 71.3.8 
- MeetPartitionStrat E 8.2.1 
- Membership Test for Collections R 28.5 
- Membership Test for Lists R 21.8 
- method P 2.0 
- Method Installation P 2.2 
- Method Selection P 2.0 
- methods, immediate T 8.3 
- methods, selection T 8.2 
- methods, true T 8.3 
- methods T 8.1 
- Migrating to GAP 4 T 9.0 
- Minimal Nonmonomial Groups R 72.4 
- Minimal Polynomials R 64.8 
- MinimalElementCosetStabChain R 41.9.12 
- MinimalGeneratingSet R 37.21.3 
- MinimalGeneratingSet, for groups with pcgs R 43.16 
- MinimalNonmonomialGroup R 72.4.2 
- MinimalPolynomial R 64.8.1 
- MinimalPolynomial, over a field R 56.3.2 
- MinimalPolynomial, over a ring R 64.8 
- MinimalStabChain R 41.7.5 
- MinimalSupergroupsLattice R 37.19.4 
- MinimalSupergroupsTom R 68.9.13 
- MinimizedBombieriNorm R 64.11.3 
- Minimum R 21.20.12 
- MinimumList R 21.20.13 
- MinusCharacter R 71.4.5 
- Miscellaneous R 15.5 
- MOCChars R 69.21.6 
- MOCString R 69.21.3 
- MOCTable R 69.21.2 
- mod, lists R 21.14 
- mod, residue class rings R 14.4 
- mod, rationals R 4.12 
- mod R 4.12.1 
- mod, arithmetic operators R 4.12 
- mod, for character tables R 69.7 
- mod, Integers R 14.4 
- mod, Laurent polynomials R 64.2.2 
- modular inverse R 4.12 
- modular remainder R 4.12 
- modular roots R 15.3 
- Module Homomorphisms R 67.7 
- ModuleByRestriction R 60.10.21 
- ModuleOfExtension R 44.8.7 
- Modules R 55.0 
- Modules over Lie Algebras and Their Cohomology R 61.12 
- Modules over Semisimple Lie Algebras R 61.13 
- modulo, for pcgs R 43.9.5 
- modulo, residue class rings R 14.4.1 
- modulo, arithmetic operators R 4.12 
- modulo R 4.12 
- ModuloPcgs R 43.9.1 
- MoebiusMu R 15.4.3 
- MoebiusTom R 68.7.11 
- Molien Series R 70.12 
- MolienSeries R 70.12.1 
- MolienSeriesInfo R 70.12.2 
- MolienSeriesWithGivenDenominator R 70.12.4 
- Monoid R 50.0 R 50.0 R 50.0 
- MonoidByGenerators R 50.0 R 50.0 
- MonoidByMultiplicationTable R 50.0 
- MonoidOfRewritingSystem R 51.5.4 
- Monoids R 50.0 
- Monomiality Questions R 72.0 
- MonomialRevLexicoLess R 64.16.3 
- MonomialTotalDegreeLess R 64.16.2 
- monomorphisms, find all R 38.9 
- MorClassLoop R 38.9.4 
- More about Boolean Lists R 22.4 
- More About Global Variables R 4.9 
- More about Tables of Marks R 68.1 
- MostFrequentGeneratorFpGroup R 45.5.8 
- Moved Points of Permutations R 40.2 
- MovedPoints R 40.2.3 
- MTX.BasesCompositionSeries R 67.5.9 
- MTX.BasesMaximalSubmodules R 67.5.5 
- MTX.BasesMinimalSubmodules R 67.5.4 
- MTX.BasesMinimalSupermodules R 67.5.8 
- MTX.BasesSubmodules R 67.5.3 
- MTX.BasisRadical R 67.5.6 
- MTX.BasisSocle R 67.5.7 
- MTX.CollectedFactors R 67.5.11 
- MTX.CompositionFactors R 67.5.10 
- MTX.DegreeSplittingField R 67.4.3 
- MTX.Dimension R 67.3.2 
- MTX.Distinguish R 67.7.5 
- MTX.Field R 67.3.3 
- MTX.Generators R 67.3.1 
- MTX.Homomorphism R 67.7.3 
- MTX.Homomorphisms R 67.7.4 
- MTX.InducedAction R 67.6.5 
- MTX.InducedActionFactorMatrix R 67.6.4 
- MTX.InducedActionFactorModule R 67.6.3 
- MTX.InducedActionMatrix R 67.6.4 
- MTX.InducedActionMatrixNB R 67.6.4 
- MTX.InducedActionSubmodule R 67.6.2 
- MTX.InducedActionSubmoduleNB R 67.6.2 
- MTX.IsAbsolutelyIrreducible R 67.4.2 
- MTX.IsEquivalent R 67.7.1 
- MTX.IsIrreducible R 67.4.1 
- MTX.Isomorphism R 67.7.2 
- MTX.NormedBasisAndBaseChange R 67.6.1 
- MTX.ProperSubmoduleBasis R 67.5.2 
- MTX.SubmoduleGModule R 67.5.1 
- multiplication, vector and scalar R 23.1.4 
- multiplication, vectors R 23.1.5 
- multiplication R 4.12.1 
- multiplication, matrices R 24.2.7 
- multiplication, matrix and matrix list R 24.2.13 
- multiplication, matrix and scalar R 24.2.4 
- multiplication, matrix and vector R 24.2.6 
- multiplication, operation R 30.12.1 
- multiplication, scalar and matrix R 24.2.4 
- multiplication, scalar and matrix list R 24.2.12 
- multiplication, scalar and vector R 23.1.4 
- multiplication, vector and matrix R 24.2.5 
- multiplication, vector and matrix list R 24.2.15 
- MultiplicationTable R 33.3.5 
- Multiplicative Arithmetic for Lists R 21.14 
- Multiplicative Arithmetic Functions R 15.4 
- multiplicative order of an integer R 15.2 
- MultiplicativeNeutralElement R 33.4.10 
- MultiplicativeZero R 33.4.11 
- MultiplicativeZeroOp R 30.10.4 
- multiplicity, of constituents of a group character R 70.8 
- Multiplier R 37.23 
- multisets R 21.19 
- Multivariate Polynomials R 64.7 
- MultRowVector R 23.3.3 
- Murnaghan components R 70.11 
- Mutability and Copyability R 12.6 
- Mutability and Copying P 3.14 
- Mutability Status and List Arithmetic R 21.15 
- Mutable Bases R 59.7 
- MutableBasis R 59.7.2 
- MutableBasisOfClosureUnderAction R 60.8.11 
- MutableBasisOfIdealInNonassociativeAlgebra R 60.8.13 
- MutableBasisOfNonassociativeAlgebra R 60.8.12 
- MutableIdentityMat R 24.4.11 
- MutableNullMat R 24.4.12 
[Top]
[Up]
GAP 4 manual