The GAP 4 Manual - Full Index S
_
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
- s_N R 18.4 
- SameBlock R 69.9.2 
- SandwichMatrixOfReesMatrixSemigroup R 49.6.7 
- SandwichMatrixOfReesZeroMatrixSemigroup R 49.6.7 
- save R 3.10 
- SaveOnExitFile R 6.7.3 
- SaveWorkspace R 3.10.1 
- Saving a Pc Group R 44.6 
- Saving and Loading a Workspace R 3.10 
- saving on exit R 6.7 
- ScalarProduct, for characters R 70.8.5 
- ScanMOC R 69.21.4 
- Schreier R 46.3 
- Schreier-Sims, random R 41.6 
- SchreierTransversal N 4.2.1 
- SchreierTreeDepth N 4.2.11 
- Schur Covers and Multipliers R 37.23 
- Schur multiplier R 37.23 
- SchurCover R 37.23.2 
- scope R 4.8 
- ScriptFromString R 68.10.2 
- Searching for Homomorphisms R 38.9 
- SecHMSM R 26.7.8 
- secondary subgroup generators R 46.11 
- SecondsDMYhms R 26.7.10 
- SeekPositionStream R 10.3.10 
- Selecting a Different MeatAxe R 67.2 
- Selection Functions R 48.5 
- Semidirect Products R 47.2 
- SemidirectProduct R 47.2.1 
- SemiEchelonBasis R 59.8.8 
- SemiEchelonBasisNC R 59.8.8 
- SemiEchelonMat R 24.9.1 
- SemiEchelonMatDestructive R 24.9.2 
- SemiEchelonMats R 24.9.4 
- SemiEchelonMatsDestructive R 24.9.5 
- SemiEchelonMatTransformation R 24.9.3 
- semigroup R 49.0 
- Semigroup R 49.0 R 49.0 
- SemigroupByGenerators R 49.0 
- SemigroupByMultiplicationTable R 49.0 
- SemigroupIdealByGenerators R 49.2.1 
- SemigroupOfRewritingSystem R 51.5.3 
- Semigroups R 49.0 
- semiregular R 39.9 
- Semisimple Lie Algebras and Root Systems R 61.7 
- SemiSimpleType R 61.7.1 
- sequence, Bernoulli R 17.1 
- sequence, Fibonacci R 17.3 
- sequence, Lucas R 17.3 
- Series of Ideals R 61.4 
- Set R 28.2.5 
- set difference, of collections R 28.4 
- Set Operations via Boolean Lists R 22.2 
- set stabilizer R 39.4 
- SetAssertionLevel R 7.5.1 
- SetCommutator R 44.4.4 
- SetConjugate R 44.4.3 
- SetCrystGroupDefaultAction R 42.6.2 
- SetElmWPObj E 7.3.1 
- SetEntrySCTable R 60.3.2 
- SetFilterObj P 3.4.2 
- SetHashEntry N 2.7.3 
- SetHashEntryAtLastIndex N 2.7.2 
- SetHelpViewer R 2.3.1 
- SetIndeterminateName R 64.1.4 
- SetInfoLevel R 7.4.3 
- SetName R 12.8.1 
- SetParent R 30.7.1 
- SetPower R 44.4.5 
- SetPrintFormattingStatus R 10.4.8 
- SetRecursionTrapInterval R 7.10.1 
- Sets T 3.4 
- sets R 21.19 
- Sets R 12.3 
- Sets of Subgroups R 37.18 
- setter R 13.6 
- setter, of an attribute T 8.1 
- Setter R 13.6.2 
- Setter and Tester for Attributes R 13.6 
- SetX R 21.21.2 
- ShallowCopy T 9.7 
- ShallowCopy R 12.7.1 
- ShallowCopy, for lists R 21.7 
- ShiftedCoeffs R 23.6.6 
- ShiftedPadicNumber R 66.1.4 
- Shifting and Trimming Coefficient Lists R 23.4 
- short vectors spanning a lattice R 25.3 R 70.10 
- ShortestVectors R 25.4.2 
- ShortLexOrdering R 29.3.6 
- ShowArgument R 7.1.2 
- ShowArguments R 7.1.1 
- ShowDetails R 7.1.3 
- ShowImpliedFilters R 13.2.3 
- ShowMethods R 7.1.4 
- ShowOtherMethods R 7.1.5 
- ShrinkCoeffs R 23.6.7 
- ShrinkRowVector R 23.4.3 
- Sift, for chains of subgroups N 5.0 
- SiftedPcElement R 43.5.8 
- SiftedPermutation R 41.9.11 
- SiftedVector R 59.8.12 
- SiftOneLevel, for chains of subgroups N 5.0 
- SiftOneLevel, for subgroup transversals N 4.1.2 
- Sigma R 15.4.1 
- sign, of an integer R 14.1 
- Sign and Cycle Structure R 40.3 
- SignInt R 14.1.7 
- SignPartition R 17.2.23 
- SignPerm R 40.3.1 
- SimpleLieAlgebra R 61.2.6 
- SimpleSystem R 61.7.11 
- SimplifiedFpGroup R 46.2 R 46.2.1 
- SimplifyPresentation R 46.7.2 
- SimsNo R 48.9.5 
- SimultaneousEigenvalues R 24.13.4 
- SingleCollector R 44.4.2 
- singlequote character R 26.1 
- singlequotes R 26.0 
- Size, for character tables R 69.8 
- Size, for groups with pcgs R 43.16 
- size, of a list or collection R 28.3 
- Size R 28.3.6 
- SizeBlist R 22.1.3 
- SizeConsiderFunction R 37.20.4 
- SizeNumbersPerfectGroups R 48.8.6 
- SizeOfChainOfGroup N 5.0 
- SizeOfFieldOfDefinition R 70.15.3 
- SizesCentralizers R 69.8.6 
- SizesConjugacyClasses R 69.8.7 
- SizeScreen R 6.11 R 6.11.1 
- SizesPerfectGroups R 48.8.1 
- SizeStabChain R 41.9.3 
- SL R 48.2.2 
- Small Groups R 48.7 
- smaller, rational functions R 64.3.2 
- smaller, pcwords R 44.2.1 
- smaller, nonassociative words R 34.2.2 
- smaller, elements of finitely presented groups R 45.2.2 
- smaller, associative words R 35.3.2 
- smaller or equal R 4.11.2 
- smaller test R 4.11.2 
- SmallerDegreePermutationRepresentation R 41.2.2 
- SmallestGeneratorPerm R 40.1.2 
- SmallestMovedPoint R 40.2.1 
- SmallestRootInt R 14.1.10 
- SmallGeneratingSet R 37.21.4 
- SmallGroup R 48.7.1 
- SmallGroupsInformation R 48.7.8 
- Smash MeatAxe Flags R 67.9 
- SmithNormalFormIntegerMat R 25.1.6 
- SmithNormalFormIntegerMatInverseTransforms R 25.1.6 
- SmithNormalFormIntegerMatTransforms R 25.1.6 
- SMTX.AbsoluteIrreducibilityTest R 67.8.8 
- SMTX.AlgEl R 67.9.2 
- SMTX.AlgElCharPol R 67.9.4 
- SMTX.AlgElCharPolFac R 67.9.5 
- SMTX.AlgElMat R 67.9.3 
- SMTX.AlgElNullspaceDimension R 67.9.7 
- SMTX.AlgElNullspaceVec R 67.9.6 
- SMTX.CentMat R 67.9.8 
- SMTX.CentMatMinPoly R 67.9.9 
- SMTX.CompleteBasis R 67.8.11 
- SMTX.Getter R 67.8.6 
- SMTX.GoodElementGModule R 67.8.2 
- SMTX.IrreducibilityTest R 67.8.7 
- SMTX.MatrixSum R 67.8.10 
- SMTX.MinimalSubGModule R 67.8.9 
- SMTX.MinimalSubGModules R 67.8.4 
- SMTX.RandomIrreducibleSubGModule R 67.8.1 
- SMTX.Setter R 67.8.5 
- SMTX.SortHomGModule R 67.8.3 
- SMTX.Subbasis R 67.9.1 
- SNFChouCollins R 25.1.2 
- SNFLLLDriven R 25.1.2 
- SNFNormDriven R 25.1.2 
- SNFofREF R 25.1.3 
- SO R 48.2.7 
- Socle R 37.11.10 
- SocleTypePrimitiveGroup R 41.4.2 
- Solaris R 73.3 
- SolutionMat R 24.6.5 
- SolutionMatDestructive R 24.6.6 
- Some Remarks about Character Theory in GAP R 69.1 
- Some Special Algebras R 60.4 
- Something T 7.4 
- Sort R 21.18.1 
- Sorted Character Tables R 69.18 
- sorted list R 21.17 
- Sorted Lists and Sets R 21.19 
- Sorted Lists as Collections R 28.2 
- SortedCharacters R 69.18.2 
- SortedCharacterTable R 69.18.4 
- SortedList R 28.2.4 
- SortedSparseActionHomomorphism R 39.6.3 
- SortedTom R 68.5.1 
- Sortex R 21.18.3 
- Sorting Lists R 21.18 
- Sorting Tables of Marks R 68.5 
- SortingPerm R 21.18.4 
- SortParallel R 21.18.2 
- Source N 3.2.5 
- Source R 31.2.8 
- SourceElt N 3.2.2 
- Sp R 48.2.5 
- SP R 48.2.5 
- space R 4.4 
- Sparse hash tables N 2.6 
- SparseActionHomomorphism R 39.6.3 
- SparseCartanMatrix R 61.7.16 
- SparseHashTable N 2.6.1 
- SparseIntKey N 2.4.3 
- special character sequences R 26.1 
- Special Characters R 26.1 
- Special Filenames R 9.5 
- Special Generating Sets R 37.21 
- Special Pcgs R 43.13 
- SpecialLinearGroup R 48.2.2 
- SpecialOrthogonalGroup R 48.2.7 
- SpecialPcgs, attribute R 43.13.2 
- SpecialUnitaryGroup R 48.2.4 
- Specific and Parametrized Subgroups R 37.11 
- Specific Methods for Subgroup Lattice Computations R 37.20 
- SplitCharacters R 69.14.7 
- SplitExtension R 44.8.6 
- SplitExtensions R 44.8.10 
- SplitString R 26.5.6 
- SplittingField R 64.4.13 
- Sqrt R 30.12.5 
- square root, of an integer R 14.1 
- SquareRoots R 33.4.13 
- SSortedList R 28.2.5 
- StabChain R 41.7.1 
- StabChainBaseStrongGenerators R 41.7.4 
- StabChainImmutable R 41.7.1 
- StabChainMutable R 41.7.1 
- StabChainOp R 41.7.1 
- StabChainOptions R 41.7.2 
- Stabiliser chain subgroups N 5.1 
- Stabilizer R 39.4.2 
- Stabilizer Chain Records R 41.8 
- Stabilizer Chains R 41.5 
- Stabilizer Chains E 8.0 
- Stabilizer Chains for Automorphisms Acting on Enumerators E 8.3 
- StabilizerOfExternalSet R 39.11.10 
- StabilizerPcgs R 43.15.1 
- Stabilizers R 39.4 
- Standalone Programs in a GAP Package E 4.4 
- Standard Generators of Groups R 68.10 
- StandardAssociate R 54.5.5 
- StandardGeneratorsFunctions R 68.10.3 
- StandardGeneratorsInfo, for groups R 68.10.1 
- StandardGeneratorsInfo, for tables of marks