Frank Lübeck

## Character Degrees and their Multiplicities for some Groups of Lie Type of Rank < 9

Here we list for certain groups of Lie type of semisimple rank at most 8 all degrees of irreducible complex representations, together with their multiplicities (i.e., the number of irreducible characters of each degree). The data are generic in the sense that for whole series of groups these numbers are given as polynomials in a parameter `q`, the order of the underlying field defining the group.

### Which series of groups of Lie type are covered?

Our main notation refers to the Dynkin diagram describing connected reductive algebraic groups and the action of the Frobenius morphism on the diagram which defines the finite group of Lie type.

Currently, we consider those groups arising from simple algebraic groups. For a given Dynkin diagram there can be several isogeny types which must be considered separately.

Type Al (linear)

We cover the simply connected groups (`sc`), these are SLl+1(q), and the adjoint groups (`ad`), these are PGLl+1(q). For each non-trivial divisor d of l+1 there is another series (`f<d>`). Here d denotes the index of the lattice spanned by the coroots in the co-character group of a maximal torus of the algebraic group. (The trivial divisors 1 and l+1 correspond to `sc` and `ad`, respectively.)

Type 2Al (unitary)

For all cases of type Al there is a corresponding twisted type. Here the `sc` type corresponds to SUl+1(q), and `ad` corresponds to PGUl+1(q).

Type Bl (orthogonal in odd dimension)

We cover the simply connected groups (`sc`), these are the Spin2l+1(q), and the adjoint groups (`ad`).

Type Cl (symplectic)

We cover the simply connected groups (`sc`), these are the Sp2l(q), and the adjoint groups (`ad`), the PCSp2l(q).

Type Dl (orthogonal in even dimension)

We cover the simply connected groups (`sc`), these are the Spin2l(q), and the adjoint groups (`ad`). Then there is another type, denoted by (`SO`), these are the groups SO2l(q).

If l is even and at least 6, then there is a fourth type of groups, denoted by (`HS`), the half spin groups HSpin2l(q).

Type 2Dl (twisted orthogonal in even dimension)

For all groups of type Dl, except the `HS` case, there is a corresponding twisted group. These are also covered here.

Exceptional series

There are ten exceptional types, all covered by our results. Some have only one isogeny type: 2B2(q2) (the Suzuki groups), G2(q), 2G2(q2) (the Ree groups), F4(q), 2F4(q2) (also called Ree groups), E8(q).

For each of the other series we consider the simply connected (`sc`) and the adjoint (`ad`) type: 3D4(q), E6(q), 2E6(q), E7(q).

### How to read the tables?

For a fixed series of groups, that is a fixed isogeny type and action of the Frobenius on the Dynkin diagram, but varying over finite fields with `q` elements, it is necessary to distinguish a finite number of cases, which are described by congruence classes modulo some number. For example for type A1(q)`sc` = SL2(q) the list of character degrees can be uniformly described for all odd q and for all even q, that is the congruence classes of q modulo 2 must be distiguished.

For each isogeny type, twisting and congruence class, we link to one page containing two polynomials per row: the first is a character degree and the second is the multiplicity of this degree.

Since many of these tables are quite large, it does not seem useful to display them in a formatted form on Web pages. Instead we link to text files. They can be viewed in a Web browser, but can also be downloaded and fed into some computer program. For example, the files can be read directly into GAP or Maple.

#### The polynomial and the `Phi`-variant

The polynomials in the parameter q describing the character degrees are always products of a rational number, a power of q and some cyclotomic polynomials in the variable q. We provide each table in a format where the degrees are given as factorized polynomials and in a format where the i-th cyclotomic polynomial in q is abbreviated by `Phi<i>`. Here is an explicit list showing the `Phi<i>`; this can also be read by GAP or Maple.

#### The `.gz` variant

If you want to download some of the tables you can save network bandwidth by using versions of the files which are compressed with the GNU `gzip` utility. (So, alltogether, each file is available in four formats.)

#### Reading files into GAP or Maple

Before reading the files you need to tell GAP what `q` means. You can set it to some indeterminate, say by `q := Indeterminate(Rationals, "q");;` in GAP 4 or by `q := Indeterminate(Rationals);; q.name := "q";;` in GAP 3. Before reading the `Phi`-variant of a table, also read this file with GAP. Of course, you can also set `q` to some prime power, such that reading the table gives the degrees for this particular `q` (but only use a `q` in the appropriate congruence class!).

Almost the same comments apply to reading the files into Maple. If nothing is assigned to the variable `q` then you don't need to first define it, otherwise unassign by `q := 'q':`.

#### Further remarks

The degrees are ordered by increasing size for sufficiently large q. But note that for small special values of q the ordering can be slightly different. Also for some small q some of the degrees may not occur (when the polynomial describing the multiplicity specializes to zero).

### References

These results were computed by the author of this page, using Deligne-Lusztig theory and self-written GAP 3 programs. A detailed reference for the mathematical and algorithmic background will hopefully be available soon. Section 2 of this article (Lübeck, F., Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math., 4 (2001), p. 135--169) contains a short description. Of course, for some of the groups of rank at most 3 the degrees were known before. Such cases are collected in the Maple part of CHEVIE; each table in that collection contains references to its origin.

### Acknowledgement

Large parts of this presentation were prepared during a stay at Centre Bernoulli, EPFL, Lausanne, within the program Group representation theory (2005). I would like to thank the organizers and the institute for the possibility of participating in the program.

### The tables, sorted by rank

for q = 0 mod 2: table name `DegreesAndMultiplicitiesA1ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesA1ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### A1(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesA1sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesA1sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 3: table name `DegreesAndMultiplicitiesA2ad_0or2mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 3: table name `DegreesAndMultiplicitiesA2ad_1mod3`,
polynomial version (.gz), `Phi` version (.gz)

#### A2(q)sc

for q = 0, 2 mod 3: table name `DegreesAndMultiplicitiesA2sc_0or2mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 3: table name `DegreesAndMultiplicitiesA2sc_1mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 1 mod 3: table name `DegreesAndMultiplicities2A2ad_0or1mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 3: table name `DegreesAndMultiplicities2A2ad_2mod3`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A2(q)sc

for q = 0, 1 mod 3: table name `DegreesAndMultiplicities2A2sc_0or1mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 3: table name `DegreesAndMultiplicities2A2sc_2mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC2ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC2ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### C2(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC2sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC2sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### G2(q)

for q = 1 mod 6: table name `DegreesAndMultiplicitiesG2_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicitiesG2_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 6: table name `DegreesAndMultiplicitiesG2_3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicitiesG2_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicitiesG2_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### 2B2(q2) (Suzuki groups)

(polynomial coefficients contain `Sqrt(2)`)

for q2 = 22m+1: table name `DegreesAndMultiplicities2B2`,
polynomial version (.gz), `Phi` version (.gz)

#### 2G2(q2) (Ree groups)

(polynomial coefficients contain `Sqrt(3)`)

for q2 = 32m+1: table name `DegreesAndMultiplicities2G2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesA3ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesA3ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesA3ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### A3(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesA3sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesA3sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesA3sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### A3(q)f2

for q = 0 mod 2: table name `DegreesAndMultiplicitiesA3f2_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesA3f2_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2A3ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2A3ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2A3ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A3(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2A3sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2A3sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2A3sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A3(q)f2

for q = 0 mod 2: table name `DegreesAndMultiplicities2A3f2_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities2A3f2_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesB3ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesB3ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### B3(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesB3sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesB3sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesB3sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesC3ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesC3ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesC3ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### C3(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC3sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC3sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2, 3, 4 mod 5: table name `DegreesAndMultiplicitiesA4ad_0or2or3or4mod5`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 5: table name `DegreesAndMultiplicitiesA4ad_1mod5`,
polynomial version (.gz), `Phi` version (.gz)

#### A4(q)sc

for q = 0, 2, 3, 4 mod 5: table name `DegreesAndMultiplicitiesA4sc_0or2or3or4mod5`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 5: table name `DegreesAndMultiplicitiesA4sc_1mod5`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 1, 2, 3 mod 5: table name `DegreesAndMultiplicities2A4ad_0or1or2or3mod5`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 5: table name `DegreesAndMultiplicities2A4ad_4mod5`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A4(q)sc

for q = 0, 1, 2, 3 mod 5: table name `DegreesAndMultiplicities2A4sc_0or1or2or3mod5`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 5: table name `DegreesAndMultiplicities2A4sc_4mod5`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesB4ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesB4ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### B4(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesB4sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesB4sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesB4sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesC4ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesC4ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesC4ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### C4(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC4sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC4sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesD4ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesD4ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### D4(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD4sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD4sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD4sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D4(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicitiesD4SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesD4SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicities2D4ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities2D4ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D4(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2D4sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1, 3 mod 4: table name `DegreesAndMultiplicities2D4sc_1or3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D4(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicities2D4SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities2D4SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicities3D4ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities3D4ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### 3D4(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities3D4sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1, 3 mod 4: table name `DegreesAndMultiplicities3D4sc_1or3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### F4(q)

for q = 11 mod 12: table name `DegreesAndMultiplicitiesF4_11mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 12: table name `DegreesAndMultiplicitiesF4_1mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2, 8 mod 12: table name `DegreesAndMultiplicitiesF4_2or8mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 12: table name `DegreesAndMultiplicitiesF4_3mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 12: table name `DegreesAndMultiplicitiesF4_4mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 12: table name `DegreesAndMultiplicitiesF4_5mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 7 mod 12: table name `DegreesAndMultiplicitiesF4_7mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 9 mod 12: table name `DegreesAndMultiplicitiesF4_9mod12`,
polynomial version (.gz), `Phi` version (.gz)

#### 2F4(q2) (Ree groups)

(polynomial coefficients contain `Sqrt(2)`)

for q2 = 22m+1: table name `DegreesAndMultiplicities2F4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 6: table name `DegreesAndMultiplicitiesA5ad_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicitiesA5ad_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3, 5 mod 6: table name `DegreesAndMultiplicitiesA5ad_3or5mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicitiesA5ad_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### A5(q)sc

for q = 1 mod 6: table name `DegreesAndMultiplicitiesA5sc_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicitiesA5sc_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3, 5 mod 6: table name `DegreesAndMultiplicitiesA5sc_3or5mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicitiesA5sc_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### A5(q)f2

for q = 1 mod 6: table name `DegreesAndMultiplicitiesA5f2_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicitiesA5f2_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3, 5 mod 6: table name `DegreesAndMultiplicitiesA5f2_3or5mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicitiesA5f2_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### A5(q)f3

for q = 1 mod 6: table name `DegreesAndMultiplicitiesA5f3_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicitiesA5f3_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3, 5 mod 6: table name `DegreesAndMultiplicitiesA5f3_3or5mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicitiesA5f3_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1, 3 mod 6: table name `DegreesAndMultiplicities2A5ad_1or3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicities2A5ad_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicities2A5ad_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicities2A5ad_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A5(q)sc

for q = 1, 3 mod 6: table name `DegreesAndMultiplicities2A5sc_1or3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicities2A5sc_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicities2A5sc_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicities2A5sc_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A5(q)f2

for q = 1, 3 mod 6: table name `DegreesAndMultiplicities2A5f2_1or3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicities2A5f2_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicities2A5f2_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicities2A5f2_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A5(q)f3

for q = 1, 3 mod 6: table name `DegreesAndMultiplicities2A5f3_1or3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicities2A5f3_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicities2A5f3_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicities2A5f3_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesB5ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesB5ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### B5(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesB5sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesB5sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesB5sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesC5ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesC5ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesC5ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### C5(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC5sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC5sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD5ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD5ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD5ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D5(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD5sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD5sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD5sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D5(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicitiesD5SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesD5SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2D5ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2D5ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2D5ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D5(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2D5sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2D5sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2D5sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D5(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicities2D5SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities2D5SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2, 3, 4, 5, 6 mod 7: table name `DegreesAndMultiplicitiesA6ad_0or2or3or4or5or6mod7`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 7: table name `DegreesAndMultiplicitiesA6ad_1mod7`,
polynomial version (.gz), `Phi` version (.gz)

#### A6(q)sc

for q = 0, 2, 3, 4, 5, 6 mod 7: table name `DegreesAndMultiplicitiesA6sc_0or2or3or4or5or6mod7`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 7: table name `DegreesAndMultiplicitiesA6sc_1mod7`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 1, 2, 3, 4, 5 mod 7: table name `DegreesAndMultiplicities2A6ad_0or1or2or3or4or5mod7`,
polynomial version (.gz), `Phi` version (.gz)

for q = 6 mod 7: table name `DegreesAndMultiplicities2A6ad_6mod7`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A6(q)sc

for q = 0, 1, 2, 3, 4, 5 mod 7: table name `DegreesAndMultiplicities2A6sc_0or1or2or3or4or5mod7`,
polynomial version (.gz), `Phi` version (.gz)

for q = 6 mod 7: table name `DegreesAndMultiplicities2A6sc_6mod7`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesB6ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesB6ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### B6(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesB6sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesB6sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesB6sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesC6ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesC6ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesC6ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### C6(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC6sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC6sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD6ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD6ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD6ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D6(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD6sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD6sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD6sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D6(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicitiesD6SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesD6SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### D6(q)HS

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD6HS_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD6HS_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD6HS_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2D6ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1, 3 mod 4: table name `DegreesAndMultiplicities2D6ad_1or3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D6(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2D6sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1, 3 mod 4: table name `DegreesAndMultiplicities2D6sc_1or3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D6(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicities2D6SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities2D6SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 6: table name `DegreesAndMultiplicitiesE6ad_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicitiesE6ad_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 6: table name `DegreesAndMultiplicitiesE6ad_3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicitiesE6ad_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicitiesE6ad_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### E6(q)sc

for q = 1 mod 6: table name `DegreesAndMultiplicitiesE6sc_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicitiesE6sc_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 6: table name `DegreesAndMultiplicitiesE6sc_3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicitiesE6sc_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicitiesE6sc_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 6: table name `DegreesAndMultiplicities2E6ad_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicities2E6ad_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 6: table name `DegreesAndMultiplicities2E6ad_3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicities2E6ad_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicities2E6ad_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

#### 2E6(q)sc

for q = 1 mod 6: table name `DegreesAndMultiplicities2E6sc_1mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 6: table name `DegreesAndMultiplicities2E6sc_2mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 6: table name `DegreesAndMultiplicities2E6sc_3mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 6: table name `DegreesAndMultiplicities2E6sc_4mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 6: table name `DegreesAndMultiplicities2E6sc_5mod6`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2, 4 mod 8: table name `DegreesAndMultiplicitiesA7ad_0or2or4mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 8: table name `DegreesAndMultiplicitiesA7ad_1mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3, 7 mod 8: table name `DegreesAndMultiplicitiesA7ad_3or7mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 8: table name `DegreesAndMultiplicitiesA7ad_5mod8`,
polynomial version (.gz), `Phi` version (.gz)

#### A7(q)sc

for q = 0, 2, 4 mod 8: table name `DegreesAndMultiplicitiesA7sc_0or2or4mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 8: table name `DegreesAndMultiplicitiesA7sc_1mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3, 7 mod 8: table name `DegreesAndMultiplicitiesA7sc_3or7mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 8: table name `DegreesAndMultiplicitiesA7sc_5mod8`,
polynomial version (.gz), `Phi` version (.gz)

#### A7(q)f2

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesA7f2_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesA7f2_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesA7f2_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### A7(q)f4

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesA7f4_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesA7f4_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesA7f4_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2, 4 mod 8: table name `DegreesAndMultiplicities2A7ad_0or2or4mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1, 5 mod 8: table name `DegreesAndMultiplicities2A7ad_1or5mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 8: table name `DegreesAndMultiplicities2A7ad_3mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 7 mod 8: table name `DegreesAndMultiplicities2A7ad_7mod8`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A7(q)sc

for q = 0, 2, 4 mod 8: table name `DegreesAndMultiplicities2A7sc_0or2or4mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1, 5 mod 8: table name `DegreesAndMultiplicities2A7sc_1or5mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 8: table name `DegreesAndMultiplicities2A7sc_3mod8`,
polynomial version (.gz), `Phi` version (.gz)

for q = 7 mod 8: table name `DegreesAndMultiplicities2A7sc_7mod8`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A7(q)f2

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2A7f2_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2A7f2_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2A7f2_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A7(q)f4

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2A7f4_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2A7f4_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2A7f4_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesB7ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesB7ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### B7(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesB7sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesB7sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesB7sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesC7ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesC7ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesC7ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### C7(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC7sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC7sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD7ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD7ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD7ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D7(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD7sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD7sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD7sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D7(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicitiesD7SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesD7SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2D7ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2D7ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2D7ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D7(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicities2D7sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicities2D7sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicities2D7sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D7(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicities2D7SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities2D7SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 11 mod 12: table name `DegreesAndMultiplicitiesE7ad_11mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 12: table name `DegreesAndMultiplicitiesE7ad_1mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2, 8 mod 12: table name `DegreesAndMultiplicitiesE7ad_2or8mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 12: table name `DegreesAndMultiplicitiesE7ad_3mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 12: table name `DegreesAndMultiplicitiesE7ad_4mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 12: table name `DegreesAndMultiplicitiesE7ad_5mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 7 mod 12: table name `DegreesAndMultiplicitiesE7ad_7mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 9 mod 12: table name `DegreesAndMultiplicitiesE7ad_9mod12`,
polynomial version (.gz), `Phi` version (.gz)

#### E7(q)sc

for q = 11 mod 12: table name `DegreesAndMultiplicitiesE7sc_11mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 12: table name `DegreesAndMultiplicitiesE7sc_1mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2, 8 mod 12: table name `DegreesAndMultiplicitiesE7sc_2or8mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 12: table name `DegreesAndMultiplicitiesE7sc_3mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 12: table name `DegreesAndMultiplicitiesE7sc_4mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 12: table name `DegreesAndMultiplicitiesE7sc_5mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 7 mod 12: table name `DegreesAndMultiplicitiesE7sc_7mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 9 mod 12: table name `DegreesAndMultiplicitiesE7sc_9mod12`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2, 3, 5, 8 mod 9: table name `DegreesAndMultiplicitiesA8ad_0or2or3or5or8mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 9: table name `DegreesAndMultiplicitiesA8ad_1mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4, 7 mod 9: table name `DegreesAndMultiplicitiesA8ad_4or7mod9`,
polynomial version (.gz), `Phi` version (.gz)

#### A8(q)sc

for q = 0, 2, 3, 5, 8 mod 9: table name `DegreesAndMultiplicitiesA8sc_0or2or3or5or8mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 9: table name `DegreesAndMultiplicitiesA8sc_1mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4, 7 mod 9: table name `DegreesAndMultiplicitiesA8sc_4or7mod9`,
polynomial version (.gz), `Phi` version (.gz)

#### A8(q)f3

for q = 0, 2 mod 3: table name `DegreesAndMultiplicitiesA8f3_0or2mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 3: table name `DegreesAndMultiplicitiesA8f3_1mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 1, 3, 4, 7 mod 9: table name `DegreesAndMultiplicities2A8ad_0or1or3or4or7mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2, 5 mod 9: table name `DegreesAndMultiplicities2A8ad_2or5mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 8 mod 9: table name `DegreesAndMultiplicities2A8ad_8mod9`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A8(q)sc

for q = 0, 1, 3, 4, 7 mod 9: table name `DegreesAndMultiplicities2A8sc_0or1or3or4or7mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2, 5 mod 9: table name `DegreesAndMultiplicities2A8sc_2or5mod9`,
polynomial version (.gz), `Phi` version (.gz)

for q = 8 mod 9: table name `DegreesAndMultiplicities2A8sc_8mod9`,
polynomial version (.gz), `Phi` version (.gz)

#### 2A8(q)f3

for q = 0, 1 mod 3: table name `DegreesAndMultiplicities2A8f3_0or1mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2 mod 3: table name `DegreesAndMultiplicities2A8f3_2mod3`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0 mod 2: table name `DegreesAndMultiplicitiesB8ad_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesB8ad_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### B8(q)sc

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesB8sc_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesB8sc_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesB8sc_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesC8ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesC8ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesC8ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### C8(q)sc

for q = 0 mod 2: table name `DegreesAndMultiplicitiesC8sc_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesC8sc_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD8ad_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD8ad_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD8ad_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### D8(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicitiesD8SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicitiesD8SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### D8(q)HS

for q = 0, 2 mod 4: table name `DegreesAndMultiplicitiesD8HS_0or2mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 4: table name `DegreesAndMultiplicitiesD8HS_1mod4`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3 mod 4: table name `DegreesAndMultiplicitiesD8HS_3mod4`,
polynomial version (.gz), `Phi` version (.gz)

#### 2D8(q)SO

for q = 0 mod 2: table name `DegreesAndMultiplicities2D8SO_0mod2`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 2: table name `DegreesAndMultiplicities2D8SO_1mod2`,
polynomial version (.gz), `Phi` version (.gz)

#### E8(q)

for q = 11 mod 60: table name `DegreesAndMultiplicitiesE8_11mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 13, 37 mod 60: table name `DegreesAndMultiplicitiesE8_13or37mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 16 mod 60: table name `DegreesAndMultiplicitiesE8_16mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 17, 53 mod 60: table name `DegreesAndMultiplicitiesE8_17or53mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 19 mod 60: table name `DegreesAndMultiplicitiesE8_19mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 1 mod 60: table name `DegreesAndMultiplicitiesE8_1mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 21 mod 60: table name `DegreesAndMultiplicitiesE8_21mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 23, 47 mod 60: table name `DegreesAndMultiplicitiesE8_23or47mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 25 mod 60: table name `DegreesAndMultiplicitiesE8_25mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 29 mod 60: table name `DegreesAndMultiplicitiesE8_29mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 2, 8, 32 mod 60: table name `DegreesAndMultiplicitiesE8_2or8or32mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 31 mod 60: table name `DegreesAndMultiplicitiesE8_31mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 3, 27 mod 60: table name `DegreesAndMultiplicitiesE8_3or27mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 41 mod 60: table name `DegreesAndMultiplicitiesE8_41mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 49 mod 60: table name `DegreesAndMultiplicitiesE8_49mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 4 mod 60: table name `DegreesAndMultiplicitiesE8_4mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 59 mod 60: table name `DegreesAndMultiplicitiesE8_59mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 5 mod 60: table name `DegreesAndMultiplicitiesE8_5mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 7, 43 mod 60: table name `DegreesAndMultiplicitiesE8_7or43mod60`,
polynomial version (.gz), `Phi` version (.gz)

for q = 9 mod 60: table name `DegreesAndMultiplicitiesE8_9mod60`,
polynomial version (.gz), `Phi` version (.gz)

Last updated: Mon Oct 15 16:49:50 2018 (CET)