In [HL89] wurden analog zum Verfahren in Abschnitt
3.1.4 jeweils (bis auf
algebraische Konjugation der Charaktere
und
) drei Brauerbaum-Kandidaten aus einer Menge von
projektiven Charakteren bestimmt. Dabei wurden mit Hilfe der
Green-Korrespondenz die Kandidaten (3.5) und
(3.6) ausgeschlossen.
Ich zeige hier, daß der Kandidat (3.6) auch
mit Mitteln der Kondensation einen Widerspruch liefert. Dazu betrachte
den -Modul
unter der Kondensation mit der
Kondensationsgruppe
und dem Idempotent
.
sei die im vorigen Abschnitt benutzte
Kondensationsalgebra.
Angenommen, der Brauerbaum-Kandidaten aus
(3.6) ist richtig. Dann kann man mit GAP
nachrechnen, daß der -Modul
genau 90 Konstituenten hat -
siehe auch Tabelle 3.16. Nach der expliziten
Konstruktion von
als
-Modul gibt es
nur 86 Konstituenten. Dies ist ein Widerspruch zu Bemerkung
2.1.2.
Man kann hier nicht erwarten, daß bei der Kondensation von
auch ein Widerspruch für den Kandidaten
(3.5) abfällt, denn dieser Kandidat
unterscheidet sich von dem Brauerbaum aus Abbildung
3.3 nur durch die Position der beiden
342-dimensionalen Charaktere
und
am restlichen Baum. Bei der durchgeführten Kondensation verschwinden
die zu diesen Charakteren gehörigen einfachen
-Moduln, wie man in
Tabelle 3.13 sehen kann.